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8.1 DWT and MODWT Wavelet Filters 

The computation of the wavelet transform is accomplished by means of a 

recursive procedure known as the Pyramid Algorithm [PW].  The data set nX  of length 

N, where N must be a power of 2, is circularly filtered with the wavelet filters ,j lh  and 

,j lg  to yield the wavelet coefficients ;jK   and scaling coefficients ;jJ   [PW, pp.96-97]: 
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The j values for the wavelet coefficients range up to some maximum value J, and the 

scaling coefficients are only for this same value of J, so there are the same number of 

scaling coefficients as there are wavelet coefficients on the highest level, J. 

Wavelet and Scaling Filters 

The basic wavelet filter lh  satisfies the following definitions [PW, p.69]: 
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The last equation means that the wavelet filters are orthogonal to even shifts.  The basic 

scaling filter lg  is the “quadrature mirror filter” corresponding to lh [PW, p.75]: 
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Then we have: 
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The basic wavelet filters are of length L as shown above, and are nonzero in the range 

 0, , 1L .  However, we may extend the range of the index to the range  , ,   

and defined the periodized wavelet and scaling filters as follows [PW, p.32]: 
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Then, for example, the filtering equations can be written symbolically: 
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There is an analogous equation for lg  .  We then have for the periodized filters: 
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This once again shows the orthogonality of the periodized wavelet and scaling filters, and 

their orthogonality to even shifts. 

The wavelet filter ;j lh  for level j is formed by convolving the basic wavelet and 

scaling filters lh  and lg  in a certain way [PW, p.102].  A recursive definition for these is 

given by the following two different methods: 
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Here, the index j ranges from 1 to J, while the index l ranges from 0 to 1jL  .  Notice 

that the wavelet coefficients are obtained from the time series vector by a procedure of 

filtering by the basic wavelet and scaling filters followed by down sampling, as can be 

seen from the factors of 2 j  in front of the summation index.  Conversely, the inverse 

(transposed) transformation from wavelet coefficients to time series vector involves an up 

sampling procedure [PW].  We merely denote this latter procedure by the transpose of the 

former, in view of the fact that these are actually orthogonal matrices. 

DWT Wavelet Filter 

For the DWT filter the wavelet coefficients ;jK   and scaling coefficients ;jJ   are 

obtained by down-sampling ;jK   and ;jJ   j times: 
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We must therefore also define: 

 ; , ; ,;2 ( 1) 1, ;2 ( 1) 1,j jj t j tj t j t
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The wavelet coefficients for a given : 0,1, , 1N t N   can then be written as: 
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This is equivalent to filtering with the periodized filters [PW, p.96]: 
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Let us now define a new summation variable: 
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Thus, mod N , in terms of this new variable we have: 
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Thus we find the following expressions for the DWT matrices: 
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The set of all wavelet and scaling coefficients for the index set  ; andj t  form an 

orthogonal matrix.  Each set of indices has N values in all.  The highest value of j is 

denoted J, with 0J J .  If this highest value is 0J , then it can be seen that 
0
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Thus for any value of J the total number of wavelet plus scaling coefficients is N. 
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MODWT Wavelet Filter 

Let us consider the MODWT wavelet transform.  These are the same definitions 

as given above.  At level j, the wavelet and scaling coefficients are given by: 
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The MODWT filters are defined in terms of the DWT filters by: 
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Note that the MODWT wavelet coefficient vector ;jK   and the scaling coefficient vector 

;JJ   are both N-dimensional vectors.  Let us now define a new summation variable: 
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Thus we find the following expressions for the MODWT matrices: 
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In this case the set of all wavelet and scaling coefficients for the index set  ; andj t  do 

not form an orthogonal matrix – they are an over-complete set.   
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Phase Lag of LA(8) Filter 

The DWT and MODWT wavelet transforms introduce a phase lag, which are 

given as follows [PW, pp.114-115].  The wavelet coefficients at a given time index are 

associated with the original time series at a shifted index, where the shift is given by ( )H

j  

for the wavelet filter and by ( )G

J  for the scaling filter.  To achieve approximately zero 

phase for the DWT filter, we must associate: 
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To achieve approximately zero phase for the MODWT filter, we must associate: 
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For the LA(8) wavelet filter, the phase shifts for the wavelet levels are given by: 
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For the LA(8) scaling filter, the phase shift for the scaling level is: 
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(Note that for the top two levels, the phase shift is greater than the data width.)  This 

indicates the amount by which the wavelet coefficients must be shifted (to the left) to 

bring them into correspondence with the data elements.  For the LA(8) filter and 8J   

we find the absolute value of these phase shifts given by: 

      ( ) ( ), 4,11,25,53,109,221,445,893,765 1, , ; 8H G

j J j J J      

These phase shifts also affect the degree by which the “wrap-around” affects the circular 

filtering, related to the width of the wavelet and scaling filters. 
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8.2 DWT and MODWT Filter Kernels 

Definition of Filter Kernels 

We have found the following expressions for the DWT matrices: 
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Let us define quantities that we call the DWT filter kernels, as follows: 
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Note that the sum over the index in the DWT filter kernel is only nonzero when the index 

is within the range 0 to Lj–1, corresponding to the width of the wavelet filter. 

We have found the following expressions for the MODWT matrices: 
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Let us then define the MODWT filter kernels, as follows: 
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These correspond to an averaging of the DWT filter kernels over all circular shifts [PW, 

p.204].  As a consequence, in the MODWT basis the filter kernels are invariant under 

circular shifts, unlike the DWT basis, and so the filter kernels in the MODWT basis are 

zero-phase filters.  They are also translation invariant.  Since the DWT MRA is not 

invariant under circular shifts, this shows that the DWT filter kernels are not translation 

invariant.   

Note that the DWT matrix in the filter kernel can be calculated using the DWT 

Pyramid Algorithm.  Starting with an N-dimensional vector and calculating the DWT, the 

Pyramid Algorithm computes each row of the DWT matrix by setting successive 

elements the vector to unity.  This must then be done N times in order to find the whole 
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matrix, once for each value of the index.  Likewise, the MODWT matrix may be found 

using the MODWT Pyramid Algorithm.  An equivalent procedure would be to find all 

1J   of the wavelet and smooth filters directly by the recursive procedure, and save 

these in 1J   vectors.  Then the DWT and MODWT matrix and filter kernels can be 

found by direct multiplication as given above.  Or, the DWT and MODWT filter kernels 

can be found directly by running the DWT and MODWT Multi-Resolution Analysis a 

total of N times, with each run giving a row of the matrix.   

DWT Filter 

In matrix notation the linear DWT transformation may be written: 

 [ ] [ ]j j J JW V K X J X  

The matrix [ ]jW  may be written in terms of elementary DWT matrices: 

 1 1[ ] [ ][ ] [ ]j j jW B A A  

It is an jN N  matrix satisfying: 

 [ ][ ]
j

T

j j NW W I  

The vector jK  is of length jN , and we define a vector jD  of length N called the DWT 

wavelet detail, by: 

 [ ] [ ] [ ] [ ]T T

j j j j j jW W F W  D X X K  

Similarly, the matrix [ ]JV  may be written in terms of elementary DWT matrices: 

 1 1[ ] [ ][ ] [ ]J J JV A A A  

It is an JN N  matrix satisfying: 

 [ ][ ]
J

T

J J NV V I  

The vector JJ  is of length JN , and we define a vector JS  of length N called the DWT 

wavelet smooth, by: 

 [ ] [ ] [ ] [ ]T T

J J J J J JV V G V  S X X J  

We also have the following orthogonality relation: 

 [ ][ ] [ ][ ] 0
J

T T

J J J J NW V V W   
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Using these orthogonality relations, we may prove the following Multi-Resolution 

Analysis (MRA) [PW, p.104]: 

 
1 1

[ ] [ ]
J J

j J j J

j j

F G
 

    X D S X X  

Thus we have the following identity: 

 
1 1

[ ] [ ] [ ] [ ] [ ] [ ]
J J

T T

j j J J j J N

j j

W W V V F G I
 

      

From the above we find the following “energy decomposition” of the MRA: 

 
2 22 2 2

1 1

J J

j J j J

j j 

    X K J D S  

The first expression is a sum over all levels of the wavelet variances, while the second is 

the sum over all levels of the “energy” of the MRA levels, and for the DWT these two 

sums are equivalent.  The DWT MRA thus satisfies the Analysis of Variance (ANOVA), 

indicated by the equality of the first expression above with the second. 

We also have the following identities: 

 
1

1

[ ] [ ][ ] [ ][ ]

[ ] [ ][ ] [ ][ ]

J
T T

j j j j j j J J

j

J
T T

J J J j j J J J

j

W W W W V

V V W V V

   





  

  





X K K J

X J K J

 

Thus we find the following orthogonality relations, since we know that all the wavelet 

and smooth coefficient vectors form a linearly independent set: 

 

( ) ( 1)[ ][ ] [ ][ ]

[ ][ ] [ ][ ] 0

j J

T j T J

j j jj N J J N

T T

j J J j

W W I V V I

W V V W

 

 



 

 
 

Here, the matrix ( )

j

j

NI  means the identity matrix in the jN -dimensional space of the 

wavelet coefficient vectors jK , while the matrix ( 1)

J

J

NI   means the identity matrix in the 

JN -dimensional space of the smooth coefficient vector JJ .  Note that the complete space 

of the DWT wavelet coefficients is N-dimensional, and is the direct sum of all the jN -

dimensional and JN -dimensional subspaces of the wavelet and smooth coefficient 

vectors.  Hence we have the following “decomposition of unity”: 
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 ( ) ( ) (all)

1 1

[ ][ ] [ ][ ]
j J

J J
T T j J

j j J J N N N

j j

W W V V I I I
 

      

This gives the orthogonality relation for the DWT matrices in their N-dimensional space.   

MODWT Filter 

In matrix notation the linear MODWT transformation may be written [PW, 

p.171,201]: 

 [ ] [ ]j j J JW V K X J X  

The vector jK  is of length N, and we define a vector jD  of length N called the MODWT 

wavelet detail, by: 

 [ ] [ ] [ ] [ ]T T

j j j j j jW W F W  D X X K  

The vector JJ  is of length N, and we define a vector JS  of length N called the MODWT 

wavelet smooth, by: 

 [ ] [ ] [ ] [ ]T T

J J J J J JV V G V  S X X J  

Using these relations, we may prove the following Multi-Resolution Analysis (MRA) 

[PW, p.169] for the MODWT, which follows from the properties of the periodized 

MODWT filters: 

 
1 1

[ ] [ ]
J J

j J j J

j j

F G
 

    X D S X X  

Thus we have the following identity: 

 
1 1

[ ] [ ] [ ] [ ] [ ] [ ]
J J

T T

j j J J j J N

j j

W W V V F G I
 

      

Likewise, the MODWT decomposition of variance is given by: 

 
22 2 22

1 1

J J

j J j J

j j 

    X K J D S  

However, unlike the DWT, the MODWT details and smooths do not form an ANOVA.   

We also have the following identities: 
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1

1

[ ] [ ][ ] [ ][ ]

[ ] [ ][ ] [ ][ ]

J
T T

j j j j j j J J

j

J
T T

J J J j j J J J

j

W W W W V

V V W V V

   





  

  





X K K J

X J K J

 

Thus we find the following orthogonality relations, assuming all the wavelet and smooth 

coefficient vectors on different levels are orthogonal: 

 

( ) ( 1)[ ][ ] [ ][ ]

[ ][ ] [ ][ ] 0

T j T J

j j jj N J J N

T T

j J J j

W W I V V I

W V V W

 

 



 

 
 

Here, the matrix ( )j

NI  means the identity matrix in the N-dimensional space of the wavelet 

coefficient vectors jK , while the matrix ( 1)J

NI   means the identity matrix in the N-

dimensional space of the smooth coefficient vector JJ .  Note that the complete space of 

the MODWT wavelet coefficients is ( 1)J N - dimensional, and is the direct sum of all 

the N-dimensional subspaces of the wavelet and smooth coefficient vectors.  Hence we 

have the following “decomposition of unity”: 

 ( ) ( 1) (all)

( 1)

1 1

[ ][ ] [ ][ ]
J J

T T j J

j j J J N N J N

j j

W W V V I I I



 

      

This gives a (pseudo-)orthogonality relation for the MODWT matrices in their ( 1)J N - 

dimensional space, as compared to orthogonality for the DWT matrices in their N-

dimensional space.   

However, the orthogonality cannot be completely correct, because the MODWT 

wavelet and scaling coefficient vectors form an over-complete set, hence they cannot be 

orthogonal, at least not within the same level.  All we can say is that on each level, the 

above matrices must be linearly equivalent (in the original N-dimensional vector space) 

to the unit matrix acting on the MODWT wavelet and scaling coefficient vectors, since 

these vectors do not form a linearly independent set.  Hence the right-hand side above 

cannot in general be the unit matrix, and the transpose of the MODWT matrix must be 

described as the “Moore-Penrose generalized inverse”. 

Orthogonality of Filter Kernels 

Let us make the following definitions for convenience: 
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 ; , 1; , ; , 1; ,J n n J n n J n J nG F V W        

Then, due to the orthogonality of the DWT, we should have: 

 

1 1

; , ; , ; , ; , ; , ; ,

0 0 0 0

1

; , ; , ; , ; ,

0 0 0

; ,

0 0

j j

j j

j j

N NN N
T T

j n n j n n j n j n j n j n

n n

N N N
T T

j n j n j n j n

n

N N

T

j n jj j

F F W W W W

W W W W

W W

   
 

   
 

 
 

 







 

          

     



      

   

  

 

   
    

   

 
  

 

   

   

 

 ; ,

; , ; , ; ,

0

j

n

N

T

jj j n j n jj j n nW W F



 


 

 

   



 
  

 


 

Therefore the product of two DWT filter kernels is equal to another DWT filter kernel of 

the same level.  This product rule indicates that the filter kernels are actually projection 

operators onto each DWT level.  This would generally be the case if they were ideal 

bandpass filters.  However, also due to orthogonality, the sum over j of the filter kernels 

(taking into account the above definition) gives a delta function: 

 
1 1 1

; , ; , ; , ; , ; ,

1 0 1 1

J N J J

j n n j n n j n n j n n J n n nn

j n j j

F F F F G 
  

      

   

       

This gives us a means of easily inverting a covariance matrix expressed in terms of the 

filter kernel.  This is because when the covariance matrix is expressed in terms of the 

DWT filter kernel, it is automatically in SVD form. 

For example, we may define a stationary covariance matrix by multiplying the 

DWT filter kernels by the level average wavelet variance, and we may define an inverse 

covariance matrix by multiplying the DWT filter kernel by the inverse level average 

wavelet variance.  Then we have: 

 

2
1 1 1 1 1 1

1 1
2 2

; , ; , ; , ; ,2
0 1 1 1 1 1

N J J J J J
k

j j n n k k n n jk j n n j n n nn

n j k j k jj

K
K F K F F F

K
 

     
 

     

     

   
     

  
      

Thus the covariance matrix can easily be inverted now, at least if we are allowed to sum 

over all n, including future as well as past values.   

However, it should be noted that the above construction only works for the DWT 

filter kernels, because only in the DWT case is the wavelet transform matrix orthogonal.  

This then leads directly to the Singular Value Decomposition form given above for the 
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covariance matrix, in terms of the orthogonal DWT wavelet matrices.  The crucial step in 

the product rule is the use of the orthogonality relation for the DWT matrices in the above 

calculation.  This step would not apply to the MODWT matrices, since the MODWT 

matrices are not orthogonal, and the MODWT filter kernels evidently do not obey the 

above product rule.  So this product rule cannot be applied to inverting a covariance 

matrix based on the MODWT filter kernels.  This must also be related to the fact that the 

MRA does not form an ANOVA for the MODWT.  Thus the covariance matrix must be 

based on the DWT filter kernels in order to get the SVD form and the simple expression 

for the inverse covariance matrix. 

8.3 Covariance Matrix – Wavelet Form 

The Discrete Wavelet Transform (DWT) of the N-dimensional vector tX  has 

been defined previously.  The wavelet coefficients for a given : 0,1, , 1N t N   can 

then be written as: 

 

 

 

    0

11

; ; , ; 2 ( 1) 1 mod
0 0

11

; ; , ; 2 ( 1) 1 mod
0 0

0,1, , 1

0,1, , 1

2 2 1 1 1 1, , 2

j

j

j

J

LN

j j t t j l jl N
t l

LN

J J t t J l Jl N
t l

Jj j

j j

K W X h X N

J V X g X N

N N L L j J N

  

  







   
  



   
  

   

   

      

 

   

We then have that the inverse DWT transform is given by: 

 

1 11 1

; , ; ; , ; ; ; , ; ; ,

1 0 0 1 0 0

j jJ J
N NN NJ J

T T

n j n j J n J j j n J J n

j j

X W K V J K W J V       
   

  

     

        

The important characteristic of the DWT transform is that it approximately decorrelates 

or diagonalizes the covariance matrix under a wide variety of situations.  This property is 

useful if the covariance matrix is difficult to estimate, and especially if it is expected to 

be non-stationary.  The DWT wavelet decomposition is especially well adapted to non-

stationary time series, as opposed to the Fourier series decomposition, which implicitly 

assumes stationarity.  Using this DWT transform, it is possible to make a simple 

assumption that the DWT wavelet coefficients are independent random variables, and 

thereby arrive at a simple approximation that describes a time-dependent covariance 

matrix. 
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Definition of DWT Covariance Matrix 

We now make the fundamental assumption that in the DWT wavelet basis, the 

wavelet and scaling coefficients are statistically independent, and hence their covariance 

matrix is diagonal in this basis: 

 2 2

; ; ; ; ; ; ; ;, , , , , 0j j j jj J J J j JK K K J J J K J                     

Using this, we may now write down an expression for the covariance matrix in the time 

basis in terms of the wavelet basis: 

 

1 1
2 2

, ; , ; ; , ; , ; ; ,

1 0 0

,
j J

N NJ
T T

m n m n j m j j n J m J J n

j

X X W K W V J V     
 

 

  

      

Note that this covariance matrix is given in Singular Value Decomposition (SVD) form, 

given that the DWT matrices are orthogonal.  The covariance matrix can likewise be 

expressed in a similar form in terms of the MODWT matrices, but since these matrices 

are not orthogonal, the result is not in SVD form. 

The quantities 2

;jK   and 2

;JJ   are called the wavelet variance.  They are 

functions of the level index j and the time index .  In general, the wavelet variance is not 

constant on each level and depends on the time index – it is the variance of each wavelet 

coefficient regarded as a random variable.  However, the true wavelet variance 

components are not simply given by the square of the DWT wavelet and scaling 

coefficients, because they must be estimated by a smoothing procedure to reduce the 

stochastic noise, just as in the case of the periodogram.  Nevertheless, for the DWT 

wavelet variance we will use the square of the wavelet coefficients as the best estimate o 

the past wavelet variance, and the level averages for the estimate of the future wavelet 

variance.  This is on the assumption that the computation of the wavelet decomposition 

itself represents a smoothing procedure.  If we were using the MODWT wavelet 

variance, then the expressions for the wavelet variance would necessarily imply that 

some sort of smoothing procedure has been implemented to estimate the true value of the 

variance.  (Since the MODWT coefficients change sign, the corresponding MODWT 

wavelet variance must go through zero at some points.  The conclusion is that the 

MODWT wavelet variance is not an accurate representation of the true wavelet variance, 

unless it is smoothed.)  Notice that if the wavelet variance were constant on each level, 
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then the above expressions for the covariance matrix would reduce to this constant level 

wavelet variance times the filter kernels defined previously. 

Estimation of DWT Wavelet Variance 

For the DWT wavelet variance in the above expressions for the covariance matrix 

in the DWT basis, we must determine which DWT wavelet coefficient corresponds to the 

present point in time, and then replace all the wavelet variances to the future of this time 

with the average level variances.  The wavelet variance is estimated from the past data 

using reflection boundary conditions, the wavelet variances in the past left alone, and the 

future DWT wavelet variances replaced with the average level variances. 

To do this we note the following index correspondences between the DWT 

wavelet coefficients ;jK   and scaling coefficients ;JJ  , and the original time series, 

where we define the length of the original time series X to be 2N: 

 

( )

( )

( )

; 2 ( 1) 1 mod2

( )

; 2 ( 1) 1 mod2

7
with 2 3

2

6
with 2 3

2

Hj
j

GJ
J

H j

j jN

G J

J JN

K X

J X

  

  





   
 

   
 

    

    

 

This means that the index ν of the DWT wavelet or scaling coefficient corresponds to the 

indicated index of the original time series X.  To find which DWT index corresponds to 

the present time 1N  , we set the index of the time series to this value and solve for 

present .  Thus for the level j wavelet coefficients we have: 

 
 

 present

7 5
1 2 ( 1) 1 2 3 2 2

2 2

3 5 5 3 3
[ ] 1 3.5

2 2 2 2 2

j j j

j j jj j j

N

N
K N N

 



   
             

   


        

 

For the level J scaling coefficients we have: 

 
 

 present

6 4
1 2 ( 1) 1 2 3 2 2

2 2

3 4 4 3 3
[ ] 1 3.0

2 2 2 2 2

J J J

J j JJ J J

N

N
J N N

 



   
             

   


        

 

With the wavelet coefficients on level j (J for the scaling coefficients) ranging from 0 to 

2 1jN  , each coefficient in this range corresponds to a time interval of 2 j  in the original 
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data series.  To align the wavelet coefficients with the original series, the present time at 

index 1N   should correspond to index 1jN   of the wavelet coefficient.  If bars of 

width 2 j  represent the wavelet coefficients, then the position of the wavelet coefficient 

will be in the middle of the bar. 

It can be seen from the above that, for the wavelet coefficients, the present point 

in time is slightly to the left of the position 3.5 index units to the future of the point 

1jN  .  For the scaling coefficients the present point in time is slightly to the left of the 

position 3.0 index units to the future of the point 1jN  .  Thus if the wavelet coefficients 

are shifted to the left by 3.5 bars, minus 3 units of the original time series, the present 

points of both time series will line up, and the boundary between two bars will lie 3 time 

units to the right of the present.  If the scaling coefficients are shifted to the left by 3.0 

bars, minus 3 units of the original time series, the present points of both time series will 

line up, and the middle of the bar, corresponding to the position of the scaling coefficient, 

will lie 3 time units to the right of the present.   

We thus find it convenient to define the future values of wavelet variance to be 

shifted by 4 units from the point in both cases: 

    future future[ ] 1 4.0 and [ ] 1 4.0j j J JK N J N        

So these values of wavelet variance to the future of the present time, corresponding to 

index  1jN   or  1JN  , respectively, are replaced by the level average values, 

corresponding to the best estimate of these future, unknown values.  (This provides a 

little greater emphasis to the present value of the scaling coefficient than to the present 

values of the wavelet coefficients.) 

Inverse of DWT Covariance Matrix 

In this SVD form it is an easy matter to define the inverse covariance matrix, at 

least over the whole index set of past and future time indices.  The inverse covariance 

matrix is given by: 

 

1 1
1 1

1 2 2

, ; , ; ; , ; , ; ; ,

1 0 0

j J
N NJ

T T

m n j m j j n J m J J n

j

W K W V J V     
 

 
 



  

     
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This inverse is well defined as long as the wavelet variance is greater than zero for all 

index values.  Thus we have, using the orthogonality of the DWT matrices: 

 

1 11 1
1 1

1 2 2

, , ; , ; ; , ; , ; ; ,

0 0 1 0 1 0

1 1
1 1

2 2

; , ; ; , ; , ; ; ,

0 0

j j

J J

N NN N J J
T T

n n n n j n j j n j n j j n

n n j j

N N
T T

J n J J n J n J J n

W K W W K W

V J V V J V

     
 

     
 

  
 



           

        

 
 

     

 

   
      

   

  
  

  

   

 
1

0

1 1 1
1 1

2 2

; , ; ; , ; , ; ; ,

1 1 0 0 0

1 1 1
1 1

2 2

; , ; ; , ; , ; ; ,

0 0 0

; ,

j j

J J

N

n

N NJ J N
T T

j n j j n j n j j n

j j n

N N N
T T

J n J J n J n J J n

n

T

j n j

W K W W K W

V J V V J V

W K

     
 

     
 









  
 

        

      

  
 

     

   


 



 
  

 

 
  

 





  

  

1 1
1 1

2 2

; ; ; ,

1 1 0 0

1 1
1 1

2 2

; , ; ; ; ,

0 0

1 1

; , ; , ; , ; ,

1 0 0

j j

J J

j J

N NJ J

jj j j n

j j

N N
T

J n J J J n

N NJ
T T

j n j n J n J n nn

j

K W

V J J V

W W V V

   
 

    
 

   
 

 





 
 

      

    

 
 

   

 

 

  

  



  

 

 

 

 

The crucial step in the above calculation was the use of the orthogonality relation for the 

DWT matrices.  This step would not hold for the MODWT matrices, and so the definition 

of the inverse covariance matrix as given above would not hold in terms of MODWT 

matrices.  (However, it is possible that a valid approximate expression for the inverse 

covariance matrix could be given in terms of MODWT matrices.) 

Now let us consider the problem of inverting the covariance matrix of the past 

data.  The inverse of the total covariance matrix of the past and future data is known from 

the SVD form given above.  Let us now consider the total data space to be of width 2N 

instead of N, with the first N data consisting of the past data, and the second N data 

consisting of future projected data and zero padding.  Let us also redefine the indices to 

run from 1 0N n    for the past data and 0 h N     for the future data, with the 

index 0n   corresponding to the present time.  We denote the total covariance matrix 

,m n  and divide the covariance matrix into partitions between past and future as follows: 

  
, ,

, ,

ˆ
1 , 0 ,

ˆ

m n m h

T

k n k h

N m n k h N


  

  
          

   
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Now, we define the total inverse matrix 1   , which is known from the SVD 

decomposition, to have a similar partition: 

  
, ,

, ,

ˆ
1 , 0 ,

ˆ

m n m h

T

k n k h

N m n k h N


  

  
          

   

 

Now, we may verify the following formula [NR, p.77]: 

 1 1

, , , , ,

1 1

ˆ ˆ
N N

T

m n m n m h h k k n

h k

 

   

 

        

The sum is taken only over the future indices, and the corresponding off-diagonal blocks 

of the covariance matrix are expected to be small.  Then the second term is of second 

order in small quantities.  To verify this formula, we have: 

 

2

1

1

1 1

ˆ ˆˆ ˆ0

ˆ ˆ ˆˆ

ˆˆ0

ˆ ˆ ˆˆ

N

T T

N N

T T

T T

N

I

I I

I





 

 

      

       

   

         

 

Thus knowing the SVD form of the inverse of the total covariance matrix, which is easy 

to find, we arrive at an expression for the inverse of the past covariance matrix.  In order 

to find this, we must invert the future part of the (inverse) total covariance matrix, but this 

may easily be done by approximating it in the SVD form with constant level wavelet 

variances for the future estimated covariance matrix (between future values and future 

values).  So we may approximate the inverse of the past covariance matrix as the past 

part of the inverse of the total covariance matrix, plus a correction term of second order 

in smallness, which depends only on the SVD form of the inverse of the total covariance 

matrix. 

Writing the above formula out explicitly, we have: 
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1 1
2 2

, ; , ; ; , ; , ; ; ,

1 1 1

1 1
2 2

, ; , ; ; , ; , ; ; ,

1 1 1

1
2 2

, ; , ; ; , ; , ;

1 1

ˆ

j J

j J

j J

j J

j

j

N NJ
T T

m n j m j j n J m J J n

j N N

N NJ
T T

m n j m j j n J m J J n

j N N

NJ
T T

m h j m j j h J m J

j N

W K W V J V

W K W V J V

W K W V J

     
 

     
 

    


 
 

    

 
 

    


 

 

  

  

  

  

  

  

 
1

; ,

1

1 1
2 2

, ; , ; ; , ; , ; ; ,

1 1 1

1 1
2 2

, ; , ; , ; , ; ,

1 1 1

1
1 2

, ; , ; ,

ˆ

J

J

j J

j J

j J

j J

N

J h

N

N NJ
T T T

k n j k j j n J k J J n

j N N

N NJ
T T

k h j k j j h J k J J h

j N N

T

h k j h j j k

V

W K W V J V

W K W V J V

W K W




     
 

   
 

 






 

 
 

  

    

 
 

     

    




   



  

  

 



  

  

1
2

; , ; ,

1 1 1

j J

j J

N NJ
T

J h J J k

j N N

V J V 


 


 

   

  

 

It will be most convenient to compute these expressions directly using the DWT Pyramid 

Algorithm and its inverse, acting directly on the appropriate 2N-dimensional DWT 

vectors.  Projection operators are used to restrict the summation over time indices to 

future values only.  Even though the summation over the indices is not over the complete 

range, we still assume as an approximation that the product of wavelet matrices between 

different levels is zero, so the products are done level-by-level, with each level 

independent of the others. 

8.4 Linear Prediction Equation – Wavelet Form 

From now on we will do all calculations relative to a time 0n  , which 

corresponds to the present time.  The new index corresponding to time steps will be 

positive going backward into the past, and negative going forward into the future.  We 

use a data set of length 2N, consisting of past data 1 0N n    of length N and future 

projected data and zero padding 0 n N    of length N according to the new index.  

Transposing this to the old index set ranging from 0 to 2 1N  , with 2048N   and the 

index values in time order with 0 the distant past and 2 1N   the distant future, the 

present time 0n   corresponds to index 1 2047N   . 
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Solution of the Linear Prediction Equation 

Let us then start again with the h-step linear prediction equation, in which the data 

h steps ahead are estimated using the past N known data values.  This is a linear 

regression equation, in which the future data h steps ahead are regressed on past N known 

data values:  

1

( )

0

ˆ ˆ
N

h h h h n n h

n

X X X X 


   



    

The quantity ˆ
hX   represents the estimated (future) signal, and h  represents the 

residual, which is random white noise.  In terms of the time-dependent covariance 

matrix, which depends on both indices separately (rather than just their difference if it is a 

Toeplitz matrix, which is the case for a stationary process), this becomes: 

 

2

, , ,

1 1
2

, ( ) , , ( ) ,

0 0

ˆ,

ˆ ˆ

m n m n m n m n

N N

m n n h m n m n n h m h

n n

X X  

   
 



 

    

      
  

 

Thus the LP coefficients may be found by inverting the time-dependent covariance 

matrix over the past N data values: 

 
1 1

1 1

( ) , , , ,

0 0

ˆ ˆ
N N

T

n h n m m h h m m n

m m


 

 

 

 

        

Here we have taken the transpose since the covariance matrix is symmetric.  Now we 

may use this to write the future estimated time series as a matrix acting on the past series:   

 
1 1 1

1

( ) , ,

0 0 0

ˆ ˆ
N N N

T

h n h n h m m n n

n n m

X X X
  



 

  

      

Taking the inverse of the covariance matrix only over non-negative values of the index, 

and multiplying by covariance matrix elements with a negative value –h corresponding to 

the future prediction, results in non-zero values of the LP coefficients.  We call this the 

Linear Prediction (LP) equation. 

However, the matrix ,m n , defined for all values of indices both past and future, is 

what we estimate in the diagonal DWT wavelet basis by estimating the past and future 

time-dependent DWT level wavelet variance.  It is very convenient therefore to be able to 
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invert the covariance matrix in this diagonal basis.  We may then define a new inverse 

matrix over the whole data set, both past and future, as follows: 

 
, , , , ,

1 1

N N

m n n k m n n k m k

n N n N


 

   

        

We found previously that the total covariance matrix ,m n  could be written in block-

diagonal form, separated between past and future index values, which is easy to compute 

from its SVD decomposition: 

  
, ,

, ,

ˆ
1 , 0 ,

ˆ

m n m h

T

k n k h

N m n k h N


  

  
          

   

 

We also found the total inverse matrix 1   , which is known from the SVD 

decomposition, to have a similar partition: 

  
, ,

, ,

ˆ
1 , 0 ,

ˆ

m n m h

T

k n k h

N m n k h N


  

  
          

   

 

Then we found the following formula [NR, p.77] for the inverse covariance matrix over 

the past index values in terms of this SVD form of the total inverse covariance matrix: 

 
1 1

, , , , ,

1 1

ˆ ˆ
N N

T

m n m n m h h k k n

h k

 

   

 

        

Substituting this expression into the formula for the LP coefficients yields the solution, 

where the matrices involved are all computed from their SVD form using the estimated 

DWT wavelet variance and successive DWT operations. 

Calculation of Covariance Matrices 

Let us return to the original definition of the total covariance matrix in terms of 

the DWT coefficients: 

 2 2

, ; , ; ; , ; , ; ; ,

1 1 1

j J

j J

N NJ
T T

m n j m j j n J m J J n

j N N

W K W V J V     
 

 

    

      

Let us once again adopt the following shorthand notation for the wavelet smooth matrices 

and wavelet smooth variance: 

 
2 2

; , 1; , ; 1;,J n J n J JV W J K       

Then the covariance matrix can be written: 



 - 22 - 

 
1

2

, ; , ; ; ,

1 1

j

j

NJ
T

m n j m j j n

j N

W K W  




  

    

The component matrices in the LP equation are all expressed in terms of the block 

decomposition of this total covariance matrix and its inverse in SVD form.  Hence they 

can be calculated directly by means of the DWT and its inverse. 

Thus the matrix ,
ˆ

m h  in the LP equation is in the off-diagonal block of the total 

covariance matrix, which is thus given by: 

 
1

1
2

, ; , ; ; ,

1 1

ˆ
j

j

NJ
T

m h j m j j h

j N

W K W  





 

  

    

The inverse matrix ,n m  can also be written in this form: 

 
1

1
2

, ; , ; ; ,

1 1

j

j

NJ
T

n m j n j j m

j N

W K W  





  

    

The inverse matrix ,
ˆ

n k  can be written likewise: 

 
1

1
2

, ; , ; ; ,

1 1

ˆ
j

j

NJ
T

n k j n j j k

j N

W K W  





 

  

    

Finally, the matrix 1

,k l



   can be written likewise: 

 
1

1
1 2

, ; , ; ; ,

1 1

j

j

NJ
T

k l j k j j l

j N

W K W  







   

  

    

This latter matrix is approximately, but not exactly, the stationary covariance matrix 

computed from the level average future DWT wavelet variances.  (There is some overlap 

with the past values of DWT wavelet variance.)  It is easily seen that the transpose 

matrices assume the same form. 

To compute these matrix products in terms of the DWT, let us start with the 

following product: 

 

1 1 1 1
1 1

2 2

, , ; , ; ; , ; , ; ; ,

0 0 1 1 1 1

1
1 1

2 2

; , ; ; , ; , ; ; ,

1 1 0

ˆ
j j

j j

j j

j j

N NN N J J
T T T

h m m n j h j j m j m j j n

m m j N j N

N N N
T T

j h j j m j m j j n

N N m

W K W W K W

W K W W K W

     
 

     
 





    
 

 

       

  
 

     
    

   
      

      

 
  

 

     

 
1 1

1 1

J J

j j

 

 

 
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The product of matrices in brackets is summed only over past index values.  Thus let us 

define the following projection vectors to project onto the subspaces of past (+) and 

future (–) indices: 

 ( ) ( )
1 ( 0) 0 ( 0) past

0 ( 0) 1 ( 0) future
m m

m m
P P

m m

 
   

  
   

 

Then we may express the matrix product as a sum over the whole index set, utilizing the 

projection vectors: 

 
1

( ) ( )

; , ; , ; , ; , , ; ,
0 1

N N
T T T

j m j m j m m j m j j
m m N

W W W P W WP W     

 
 

     
  

       

Starting with a vector on the right in the DWT wavelet coefficient space, this may be 

computed by successively taking the inverse DWT, multiplying by the projection vector 

in time series space, then taking the DWT back into the wavelet coefficient space.  Thus, 

written in matrix notation, the expression for the matrix product above becomes: 

    
1

1 1
( ) 2 ( ) 2 ( )

, ,
,0

ˆ
N

T T T

h m m n
h nm

P W K W P W K W P


 
  




   
  

  

Similarly, we may write the other term of the LP coefficient equation as: 

 

   

1 ( ) ( ) 1 ( ) ( )

, , ,
,

1 1

1 1
2 1 2

ˆ ˆ ˆ ˆ

ˆ ˆ ,

N N
T T

m h h k k n
m n

h k

T T T

P P P P

W K W W K W

     

   

 

 


       
 

     


 

This term is then multiplied on the left by the expression for ,
ˆ T

h m  given above, and 

subtracted from the previous term, to yield the complete expression for the LP 

coefficients (in matrix form). 

It should be noted that in the stationary approximation, the wavelet variance on 

each level is constant in time and hence does not depend on the index ν.  Hence the 

covariance matrix over the whole data set reduces to the following form: 

 
1 1

(stat.) 2 2

, ; , ; , ; ,

1 1 1

j

j

NJ J
T

m n j j m j n j j m n

j N j

K W W K F 


 

   

      

The quantity ; ,j m nF  is the filter kernel and is the same function that operates on the data 

set to give each level j of the DWT MRA.  Thus the stationary covariance matrix acting 
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on a vector nX  over the whole data set is equivalent to taking the MRA of the data, and 

multiplying each level j by the constant level wavelet variance 2

jK . 

Optimal Filtering and Smoothing 

We may define a generalized Linear Prediction and Smoothing that includes an 

estimation of the true signal values of the past data along with the projected future data.  

Thus we start again with the original LP equation for the projected future data ˆ
hX  , 

except that now we write it for a general index k that can be either a future or a past 

index: 

 
1 1 1

1

( ) , ,

0 0 0

ˆ ˆ
N N N

T

k n n k k m m n n

n n m

X X X
  



  

      

If k were a past index value and the matrix ,
ˆ T

k m  were the full covariance matrix, then 

obviously the product of the past covariance matrix with its inverse would yield the 

identity matrix.  In other words, the best estimate of the past signal would be simply the 

value it assumed.  But the smoothing operation enters because ,
ˆ T

k m  is an estimate of the 

true covariance matrix, in which the noise covariance has been removed.  If k were a 

future index, then there would be no noise component anyway, but if k is a past index, 

then there will be a diagonal noise component in addition to the covariance matrix of the 

signal, which has diagonal and off-diagonal components.  Thus to arrive at this estimate 

of the true covariance matrix, we must estimate the noise component and subtract it from 

the diagonal components of the covariance matrix.  Then the product of this de-noised 

covariance matrix with the inverse of the original covariance matrix is not the identity, 

and it results in an estimate of the true signal, after de-noising.  This filtering operation 

on the past data is also called optimal filtering and smoothing. 
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