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A stationary stochastic process is one for which the statistical properties do not change 

with time.  This is the easiest case to deal with, and the one for which the most 

mathematical results are known.  The discrete stochastic time series tX  is imagined to 

extend to plus or minus infinity in the (integer) time index t.  Ideally, we imagine this 

time series to be but one realization of the stochastic process, which could hypothetically 

be repeated an infinite number of times, so that the statistical properties could be deduced 

from this infinite number of realizations.  In the real world, of course, the time series is 

usually a unique instance, and we must do our best to estimate the statistical properties 

from this one instance.  In general, in a stochastic process there could be an infinite 

number of joint probability distributions between each set of N elements of the time 

series, for N different time indexes t, and we could deduce the joint probability 

distribution for each set of N such elements from the infinite set of realizations of the 

process at our disposal.  So, for theoretical purposes, we will assume the existence of 

such an infinite set of realizations, although in reality only one realization of the process 

will exist. 

 

In general, this infinite hierarchy of joint probability distributions will give rise to an 

infinite hierarchy of Nth-order covariance functions, which could in general be time 

dependent, actually a function of all N of the time indexes.  If N is greater than two, then 

this gives rise to what are known as higher-order statistics.  If the correlation functions 

are time-dependent, then this gives rise to non-stationary statistics.  If only the lowest 

order correlation is considered, consisting of the two-point correlation functions, then this 

corresponds to second-order statistics.  This is the usual case considered in filter 

theory, although a few excursions into higher-order statistics have been made.  So the 

practical choice for filter theory is between stationary (time-independent) or non-

stationary (time-dependent) second-order correlation.  In this paper we will study the 

stationary case, and the problem of prediction based on stationary second-order 

correlation. 

4.1 Stationary Processes 

Given a (real) time series tX , the most basic quantity in second-order statistics is the 

covariance matrix.  This is defined as the covariance between any two elements of the 

time series.  In the general case, this covariance will be a function of both time indexes.  



For notational purposes, let us denote by t the present time, or the last known element of 

the time series, even though we suppose the stochastic process to extend from minus 

infinity to plus infinity in time.  Then, we define a time-dependent covariance matrix as 

follows: 

 
, ( ) ,j n t j t n t j t nt X X E X X   

       

Note that, for a real time series, the covariance matrix is symmetric.  If the covariance 

matrix is time-independent, corresponding to a stationary process, then the covariance 

matrix takes the form: 

  , ,  stationaryj n t j t n j n
X X X  

    

The function 
j n




 is called the autocovariance function.  In this case, changing the 

value of t changes the value of both indexes of the covariance matrix by the same 

amount, and moves the matrix element down one row and one column, or in other words 

down one unit along the diagonal.  Then time-independence means that all the matrix 

elements along each diagonal are equal.  In other words, if the covariance matrix is time-

independent, corresponding to a stationary process, then it is a Toeplitz matrix.  In the 

general case of time-dependent covariances, therefore, the covariance matrix is not 

Toeplitz.  However, it will still be symmetric, since the covariances are symmetric for 

each time t. 

 

The other statistical quantity of interest in the case of a second-order stationary process is 

the mean of the process.  This is defined by: 

  ( )  stationarytt X X    

For a second-order stationary stochastic process, the mean is assumed constant.  In what 

follows, we will assume that the mean has been subtracted off from the time series, so 

that the time series is zero-mean. 

 

Consider now the problem of finding the best linear predictor of 1tX  , given the N 

previous values of the time series.  If { Xt } is a zero-mean process, we may write the best 

linear predictor of 1tX   in terms of the previous N values of the time series as: 
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In the case of a stationary process, the Linear Prediction (LP) coefficients n  do not 

depend on time.  Multiplying each side of the first equation by , 0, , 1t jX j N    and 

taking expectations, we arrive at: 
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In terms of the covariance matrix, this becomes: 
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However, under the assumption of stationarity the covariance matrices and LP 

coefficients do not depend on time, so we may write this as: 



  
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

    

We now make the assumption that the covariance matrix is nonsingular.  This will be the 

case for a generic stochastic process, provided the variance of each element of the time 

series is greater than zero.  Otherwise, if the covariance matrix is singular, then we are 

dealing with a deterministic process, and the Linear Prediction method will not work.  

Thus, inverting the covariance matrix, we have the solution to the LP problem: 
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Since the covariances are stationary, they may be estimated in terms of the past data: 
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Thus the assumption of stationarity allows us to estimate the1-day future covariance in 

terms of the past covariances.  The easiest way to solve these equations for the LP 

coefficients is to estimate the covariances by means of this estimate, form the Toeplitz 

covariance matrix, and then invert this matrix using a numerical routine for the inversion 

of Toeplitz matrix.  This is the most basic version of the Linear Prediction filter.  Other 

methods of solution will be described below. 

 

The most trivial example of a stationary process is of course the Random Walk 

process, in which the different tX  variables are complete uncorrelated.  This means that: 

    , , 0 Random Walkj n t j t n j n
X X j n  

      

In this case, all the LP coefficients vanish, and we have: 

    20 0,n t t tX Z Z WN     

In other words, each value of the tX  variable is an independent random variable, 

completely un-correlated with the tX  variables at different times.  This is the simplest 

case of a stochastic process, but not the generic case by any means.  In this simplest 

case, the tX  variables are completely unpredictable, but in the generic case there will be 

correlation present which allows a (partial) prediction to be made. 

 

4.2 Fourier Representation 

Theoretically, the time series tX  extends from minus infinity to plus infinity, so there are 

an infinite number of terms.  Then the Fourier transform of this process is a continuum 

over all possible frequencies from   to  .  In this case, the Fourier transform extends 

over the entire range of the stochastic process, for all time, and it is normally assumed 

that the covariance matrix is stationary, so that the (continuous) power spectrum does not 

change with time.  Then the stationary time series can be specified by specifying the 

continuum of (independent) random variables in the Fourier basis, with frequencies 

ranging from   to  .  This then specifies the stationary time series in the time 

domain, for all time, in terms of the corresponding set of random variables in the 



frequency domain.  (It will be shown below that stationarity of the time series is 

equivalent to statistical independence of the continuum of Fourier components.) 

 

For an infinite stationary stochastic process (in general complex), the Fourier components 

form a continuum between the (Nyquist) frequencies from   to  .  (More precisely, 

it is the interval  ,   .)  The time components of this process are then specified, in a 

precise mathematical formalism, by means of a stochastic integral [Brockwell & Davis 

(1991)]: 
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Each infinitesimal increment ( )dZ   is regarded as an independent (and hence uncorrelated) 

random variable, in the Fourier basis.  The specification of this entire set of random 

variables in the Fourier basis specifies the stationary time series tX  for all times t. 

 

Given the entire time series tX , we can perform an inverse Fourier transform to find the 

random variables ( )dZ   in the Fourier basis.  To accomplish this, let us use the 

formalism of the Fourier transform for ordinary functions [Brockwell & Davis (1991)].  

Suppose we are given a time series ( )K n , which is absolutely summable: 

 ( )
n

K n




   

Then we can write this time series in terms of its Fourier transform: 

 ( ) ( ) 0, 1,ihK h e g d h




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 



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The inverse Fourier transform is given by: 

 
1

( ) ( )
2

in

n

g e K n







   

We may carry this over to the stochastic integral by defining the random orthogonal 

increment in terms of an ordinary random variable   in the Fourier basis as follows: 
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Now we may express the random variable   in the Fourier basis in terms of the inverse 

Fourier transform of tX : 
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Once again, in the Fourier basis the variables   are presumed to be independent, and 

hence uncorrelated, which in turn implies that the process is stationary (and vice-versa).  

This will now be shown using the formalism just introduced. 



 

Taking the covariance between two elements of the (complex) time series, and using the 

assumption that the Fourier components are uncorrelated, we find: 
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This then shows that, due to the orthogonality of the Fourier components, the delta 

function in the frequency variable implies that the covariance of the two time series 

components is independent of the time variable t.  Conversely, if the covariance is given 

by an autocovariance function that is independent of t, then it may be expressed as a 

stochastic double integral with orthogonal increments, by reversing the argument.  The 

autocovariance function is defined to be: 

 ( ) ( ) ( )ih ih

X t h th E X X e dF e f d

 

 

 

   
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
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From this, by taking the inverse Fourier transform, we see that the spectral density is 

given by: 
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Hence the autocovariance function of a stationary process is the Fourier transform of the 

spectral density [Brockwell & Davis (1991)].  We see that orthogonality of the Fourier 

components is a necessary and sufficient condition for stationarity. 

 

4.3 LP in the Fourier Basis 

We now wish to express the Linear Prediction equation in the Fourier basis.  We write 

the LP equation for the h-step-ahead predictor in the form (letting N go to infinity): 

  
0

 stationarynj n j h
n

X  


 

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In order to represent the autocovariance functions in the Fourier basis, we note that when 

the time series is real, the autocovariance function is given by: 

      ( ) cos ( )  realX t h th E X X h f d X
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The spectral density is in turn given by: 
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By analogy with the expansion for the stochastic variable  , let us define the spectral 

density as the absolute square of an ordinary complex function.  However, it can be 



shown that, as for an ARMA (Auto-Regressive Moving Average) process, if the process 

is causal and invertible, then the sum is restricted to positive frequencies only: 
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This corresponds to the idea, comparing this expression with the corresponding one for 

the time series, that     corresponds to a Fourier sum over past values of the time series 

only.  Thus the autocovariance function in this new notation is given by: 
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Now if we use this in the LP equation, we get: 
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We note from the derivation of the LP equations that the index j can range over all non-

negative values, so we have a separate equation for each such value of the index j.  

Expressing the cosines in terms of exponentials, we may write: 
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Now, in view of the fact that the LP coefficients are real, let us make the following 

definitions: 

      
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Now we may write the equation in the form: 

           
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What this equation says is that, after integrating over all frequencies, only the “zero 

frequency” modes of the integrands survive, since the integral of a periodic sine wave 

over a range of 2  in frequency is zero.  The integers j range from zero to infinity, and 

there is a separate equation for each integer j.  So corresponding to the integer j, and 

regarding  ie    as being “positive frequency”, and the j’th mode the term proportional 

to ije  , only the j’th mode of the terms proportional to ije   survive, and only the –j’th 

mode of the terms proportional to ije   survive, on both sides of the equation.  Since each 

side of the equation involves the sum of a quantity and its complex conjugate, the 

conditions on the quantity and its complex conjugate are equivalent and redundant.  

Hence, for a given 0j   the mode that survives on the left hand side is: 

        'th mode of: lhsi i i ijj e e e e           

On the right hand side for a given 0j   the mode that survives is: 

      'th mode of: rhsih i i ijj e e e e          

The equation says that for each of these corresponding modes on each side of the 

equation, for a given 0j  , the sum of the modes and their complex conjugates are 



equal.  Now, the quantity  ie     consists of negative frequency modes, by our 

definition.  Each term of this quantity shifts the mode in the same direction as some 

positive j, so this quantity is redundant with the exponential ije   for some non-negative j.  

Thus no information is lost if we simply drop this term from both sides of the equation.  

Hence, for a given 0j   the mode that survives on the left hand side is: 

      'th mode of: lhsi i ijj e e e       

On the right hand side for a given 0j   the mode that survives is: 

    'th mode of: rhsih i ijj e e e      

On the right-hand side, only the modes of non-negative frequency survive.  Writing this 

term out, we have: 
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We see that the first h modes, corresponding to negative frequency, do not survive the 

integral, so the surviving terms on the right-hand side are given by: 
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Thus, we find that the general solution is given by: 
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If we make the assumption that the k  are also real, then the complex conjugate 

quantities are obtained just by reversing the sign of the frequency .  Hence we may write 

for the general solution: 
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This, then, is the general solution of the Linear Prediction problem for the h-step-ahead 

predictor, in the Fourier domain, for a causal, invertible time series. 
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