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According to the Random Walk model, stock price returns (the changes in price over a 

given time period, such as from one closing price to the next) are supposed to be 

independent, uncorrelated random variables.  (More precisely, it is the logarithmic price 

returns that are usually considered.  These are postulated to be Gaussian random 

variables.)  Then the logarithmic prices, which are the sum of these independent price 

returns, follow a stochastic process called the Random Walk.  The main consequence of 

the Random Walk hypothesis is that future returns are independent (and hence 

uncorrelated) with the past prices (or any other financial data, such as fundamental data).  

So, theoretically no function of past data can be used to predict future price returns.  This 

is a statement of the Efficient Market Hypothesis, of which the Random Walk model is 

a special case. 

 

If the market were perfectly efficient, then there would be no point to short-term trading.  

On the average, the expected return from short-term trading would be zero, relative to a 



buy-and-hold strategy.  If the Random Walk process is one with drift, corresponding to 

the secular upward trend of the stock market, then the buy-and-hold strategy would give 

an overall average return over a long holding period (equal to the secular trend).  This is 

presumably a reward for the risk inherent in stock investing, which is measured by the 

variance or standard deviation of the Random Walk over time.  But short-term trading 

would only increase the risk, with no corresponding increase in expected returns over 

time.  Thus it would be just like gambling, except that the expected return (over buy-and-

hold) would be zero (rather than a loss, as with most gambling). 

 

However, hardly anybody believes that the market is truly efficient.  There are many 

people interested in short-term trading, and many others who are prudent to buy and sell 

securities over longer term holding periods, as the situation changes and different 

securities look more promising (based on past information).  A simple, rough argument 

indicates that the market can never be truly efficient.  If the market were perfectly 

efficient, then there would be no reward for short-term trading (or longer-term trading 

either), so people would stop trading.  But it is precisely the trading activities, on all time 

scales, that keep the market efficient.  Hence when the trading stops, inefficiencies would 

immediately be created, which would induce people to start trading again because they 

would then be able to make a profit.  So the conclusion is that people trade to the extent 

that they can still make a profit, so the efficiency of the market is dictated by the ability 

of the best traders to still be able to make a profit (at the expense of the less 

knowledgeable traders).  So we expect inefficiencies to exist at a level that the most 

sophisticated traders are just barely able to find and take advantage of them.  At the 

present time, the market is almost efficient, but it can never be perfectly efficient.  

Profitable trading opportunities will always exist for the most sophisticated traders. 

 

Measuring Correlation 

In order to find trading rules that work, we must find certain functions of the past price 

data (and/or perhaps other financial data such as fundamental data) that have a non-zero 

correlation with future returns.  (See the Appendix for the definition of correlation.)  

As we have stated, the Random Walk model states that this correlation should be zero.  

We can construct various functions and measure their correlation with future returns, or 

more precisely, we can measure the sample correlation.  The sample correlation is an 

estimate of the actual correlation, based on a finite sample of data.  The true correlation 

can only be determined in a hypothetical stochastic system in which there is an infinite 

amount of data available, and the stochastic process is second-order stationary, 

meaning that the correlation is constant for the whole data set.  And here is a major 

problem regarding financial data:  There is almost never a very large data set to work 

with, and within this data set it is almost certain that the stochastic process is non-

stationary.  So the measured correlation within one block of data will (probably) be 

different from that within other blocks of data in the same data set.  Furthermore, within a 

finite data set, the sample correlation is itself subject to a statistical uncertainty.  A totally 

random data set can yield a measured value of the sample correlation, which is non-zero, 

just because of random statistical fluctuations.  The standard error for these fluctuations, 

for the usual Linear or Pearson’s R correlation, is given by 1 N , where N is the number 



of data points in the set.  (The standard error is slightly smaller for the robust correlation 

methods.)  So, for a set of returns 100 days long, the standard error of the sample 

correlation for these returns is 10%, which would be a very sizable correlation if it 

existed.  For a data set 1000 days long, which is the usual length of the data set that we 

work with, the standard error is 3.16%, which would be a small but non-negligible 

correlation if real.  Furthermore, there are indications that long-range correlations only 

extend to a maximum of 1000 data days, or four years [Peters (1991, 1994)].  So, the 

conclusion is that any correlations that exist in the data, are likely to be “down in the 

statistical noise” and of the same order of magnitude as the statistical uncertainty of the 

sample correlations.  Nevertheless, these small correlations, if real, can lead to very 

sizable returns from short-term trading. 

 

As an example, suppose we find a technical indicator that has a 5% correlation with the 

1-day future returns.  Suppose the daily volatility is 2% (r.m.s. value of daily returns).  

Then, setting the daily trading position (trading rules) proportional to the technical 

indicator, the expected daily gain is the product of the correlation times the volatility, or 

0.1%.  Assuming 256 trading days per year, this leads to a simple annual gain from short-

term trading of 25.6% and a compounded annual gain of 29.2% (over buy-and-hold), 

which most people would regard as excellent!  However, by most standards the 5% 

correlation, given a standard error of 3.16%, would not even be regarded as statistically 

significant.  The conclusion is that if we want to find trading rules that work, we have to 

search for correlations that are barely above the statistical “noise” level, and as a result 

we must also accept that the standard error of the gains (from short-term trading) will 

inevitably be of the same order of magnitude as the gains themselves.  Nevertheless, if 

the short-term trading is done within the setting of an overall portfolio strategy, the 

standard error for short-term trading for the whole portfolio can be reduced while the 

returns remain the same.  In this case the standard error of the returns will be reduced 

roughly by a factor 1 N , where now N is the number of securities in the portfolio.  Of 

course, to get this 1 N  reduction in the standard error, it is necessary to do N times as 

much work! 

 

Regarding the statistical significance of the correlation, the usual interpretation is that a 

correlation greater than two standard errors (from zero) is regarded as significant.  A 

correlation this large, at least 6.32% in the example above, is achieved only 4.6% of the 

time by pure chance alone.  (This corresponds to a 4.6% significance level.)  So, we say 

that this correlation is significant at the 95.4% confidence level, because there is a 95.4% 

chance that this correlation is not due to chance alone.  (We are calling the confidence 

level that quantity, which is 100% minus the significance level.)  Theoretically, when 

estimating the “true” correlation by means of the sample correlation, the measured 

sample correlation will itself be a random variable with a Gaussian distribution of values.  

The standard error of this distribution is 1 N  as stated above, for a sample size N.  

Thus, if there is no actual correlation at all, then the measured values of the correlation 

will be distributed around zero, with a standard error 1 N .  These values will lie within 

one standard error of zero 68.3% of the time, within two standard errors of zero 95.4% of 



the time, and within three standard errors of zero 99.7% of the time [Natenberg (1994)].  

So, if the measured correlation is not at least two standard errors away from zero, it is 

usually regarded as not statistically significant.  If there is no real correlation, then the 

distribution of measured correlation values will be a Gaussian distribution 

(approximately) as stated, distributed around zero.  However, this does not mean that if 

the measured correlation is within two standard deviations of zero, then it is necessarily 

not a real correlation.  All it means is that the measured correlation is consistent with zero 

correlation (to the 4.6% significance level).  Most of the correlation we measure, at the 

“peaks” in the Correlation Test display in QuanTek, are actually more than two 

standard deviations away from zero, so they can be regarded as significant.  However, 

we prefer the following interpretation, which seems more reasonable:  The measured 

correlation represents the mean or expected value of the actual correlation, and this value 

is uncertain by an amount given by the standard error, 1 N .  In this way we are not 

forced to ignore measured correlations that are within two standard deviations of zero, 

and then “define” them to be zero.  We regard the measured correlations to be the most 

likely value of the actual correlations, subject to a rather wide uncertainty given by 

1 N .  If Edgar Peters (1991, 1994) is correct and the correlations do not persist longer 

than 1000 days or so, then we cannot reduce this statistical uncertainty any lower than 

about 3% by taking a larger data set, so there is never any way to conclusively separate 

the correlations we are seeking from the stochastic uncertainty of the sample correlation 

measurement.  Nevertheless, these correlations, provided they are really there (which 

they seem to be), can still be used to construct profitable (over the long term) short-term 

trading rules.  

 

The ultimate point is that there is no “Law of Large Numbers”, or mathematical limit as 

N  , that we can take in order to prove conclusively the existence of correlation, or 

measure the sample correlations to arbitrarily high confidence levels.  This limit might 

be approximated by finding some trading rule, and testing it on a whole portfolio of 

stocks over a long period of time, say 1000 days.  In this way, we may finally be able to 

find an unambiguous signal for a highly statistically significant correlation, and the 

portfolio ensemble then plays the role of the very large statistical ensemble.  But such a 

calculation might take hours or days to perform, and I  have not yet attempted such long 

calculations.  In the meantime, it is still necessary to apply a certain amount of intuition 

in deciding which are meaningful correlations and which are just stochastic noise in the 

measured correlations (when constructing technical indicators using QuanTek).  So it is 

still a creative process, requiring some thinking and judgment, to choose an effective set 

of trading rules using the statistical tools in the QuanTek program.  Short-term trading 

cannot and should not be reduced to a mere mechanical operation, at least in my view.  

(Having said this, I should add that the QuanTek program yields some rather clear 

signals for correlations between certain technical indicators and future returns, which 

certainly do not look like stochastic noise.  But there is no statistical test that can prove 

conclusively that they are real correlations.  Without an infinite data set, or at least a very 

large one, it is impossible to prove anything conclusively from Statistics.) 

 



Technical Indicators 

The usual definition of a technical indicator is some function of the past price data, 

which “signals” a buy or sell point.  As a prototype, one of the most commonly used 

technical indicators is a combination of two (exponential, say) moving averages, one with 

a longer time scale than the other.  When the shorter MA crosses the longer MA moving 

upward, this is a buy signal, and when the shorter MA crosses the longer MA moving 

downward, this is a sell signal.  The expectation is that as long as the shorter MA is above 

the longer MA, the prices will be in an up-trend, and as long as the shorter MA is below 

the longer MA, the prices will be in a down-trend [Pring (1991)].  (Evidently there is an 

assumption here that the prices will be in one of two modes, either bull or bear market, 

and that these modes will last much longer than the time scale of the moving averages 

themselves.)  Equivalently, we can form an oscillator from the two MA’s, by subtracting 

the longer one from the shorter one (assuming logarithmic price data).  This is a 

logarithmic version of an oscillator called the Moving Average Convergence-

Divergence (MACD), in which the ratio of two exponential MA’s of the price data is 

taken [Pring (1991)].  Then the buy/sell points are marked by the points at which this 

MACD crosses the zero line, moving up or down respectively. 

 

I would like to remark here that, in my opinion, most of the traditional rules of Technical 

Analysis are probably obsolete.  They probably worked well in decades past, when there 

were far fewer players in the market and the rate of information exchange was much 

slower and the amount of information available much less.  The markets are undoubtedly 

much more efficient now than they were when these traditional rules were first 

formulated [Edwards & Magee (1992)].  In particular, the ability to signal a long-term 

trend change by the crossing of two MA’s of much shorter time scale seems “too good to 

be true”, as do the other methods of signaling a trend change by means of technical 

patterns of short time duration.  Probably in today’s market the predictive power of any 

technical indicator formed from price data over a certain time scale is only of the order of 

that time scale.  I will have more to say on this shortly, in connection with the phase 

relationships of the technical indicators. 

 

I would now like to make a slight generalization of the concept of technical indicator, and 

regard a technical indicator as any function of the past prices, which is supposed to be 

correlated with future returns.  So, for example, the implication is that the oscillator 

formed from two moving averages will be above zero when the (intermediate or long-

term) future returns are positive, and below zero when they are negative.  In other words, 

there is expected to be a positive correlation between this oscillator and the future 

returns over some time interval N.  It is possible to form a whole variety of technical 

indicators of this sort, and measure their correlation with N-day future returns to 

determine their effectiveness.  Then, either a linear trading rule can be used in which the 

position in the security is adjusted to linearly follow the value of the indicator, or a non-

linear trading rule can be used in which the position is long by a fixed amount when the 

indicator is positive and short by a fixed amount when the indicator is negative.  (This 

latter trading rule, of course, requires far fewer trades.)  Likewise, the indicator itself can 

be a linear function of the past returns, such as MA’s or sums and differences of MA’s, 

or it can be a non-linear function of past data, such as polynomials or the hyperbolic 



tangent function or the error function.  By using non-linear functions of the data and 

measuring their linear correlation with future returns, we are actually capturing some of 

the higher-order statistics of the data, which is probably important for financial data.  

However, for the time being we will confine the discussion to various linear 

combinations of various types of smoothings of the past data.  However, our method can 

be extended to non-linear functions of the past data simply by defining and using such 

functions instead of linear ones.  Evidently, the traditional technical indicators themselves 

may be regarded as very complicated non-linear functions of the past price data.  

Examples of this would be support/resistance levels, head and shoulders tops and 

bottoms, triangles, rectangles, flags, and so forth, and even trend lines for bull and bear 

trends.  However, once again I question the validity of some of these patterns in today’s 

market. 

 

There appear to be two basic categories of technical indicators, corresponding to two 

basic categories of correlation.  The most basic correlation is what is known as return to 

the mean.  This implies that there is some mean or “correct” price, which the security 

returns to if the security becomes mis-priced.  So, if the price is below some average 

level, it can be expected to move higher, and if it is above the average level, it can be 

expected to move lower.  So the technical indicator consists of the current price relative 

to some longer-term average or smoothed price.  The future returns are then expected to 

be anti-correlated with this indicator (or correlated with the negative of the indicator).  

Since the security becomes mis-priced in the first place after some up- or down- move, 

the presence of a return to the mean mechanism also shows up in the anti-correlation of 

past returns with future returns.  There is a rather pronounced anti-correlation in daily 

returns up to about three days in the past, with the future one-day returns, and this can be 

explained by the return to the mean mechanism acting over these very short time 

intervals.  It also appears to act over much longer time intervals as well.  This appears to 

be a consequence of fractal statistics [Peters (1991)].  Note that this mechanism is 

nothing other than the famous “Buy low – Sell high” strategy. 

 

A second correlation is known as trend persistence.  This correlation corresponds to the 

tendency of the market to remain in either a bull or bear market.  In other words, if 

returns are positive or negative in the past, they are the same in the future, so that there is 

a positive correlation between past and future returns.  This mechanism would seem to 

be at variance with the return to the mean mechanism, which implies negative 

correlation.  However, these two mechanisms can be reconciled by supposing that the 

“mean” is some smooth, slowly varying function of past prices and economic data.  The 

trend, corresponding to a bull or bear market, is persistent and is related to the (usually) 

slowly varying rate of change of this price mean.  (Or it can be thought of as the mean 

value of the returns.)  Then, the shorter-term fluctuations about this mean price level are 

anti-persistent, and correspond to the return-to-the-mean mechanism.  So, given any 

time scale, we may smooth the price data on this time scale, and then suppose that the 

smoothed long-term trend is persistent, and the short-term fluctuations about this trend 

are anti-persistent.  Evidently in an efficient market, these two mechanisms “cancel out”, 

leading to zero correlation and neither persistence nor anti-persistence of returns.  But 

when inefficiencies exist, they do not cancel out, and evidently may exist simultaneously 



on different time scales.  Evidently the true situation is much more complicated than this, 

and what has just been said should be regarded as merely an oversimplified “sketch” of 

the true picture.  To our knowledge, nobody has yet formulated a complete theory of 

stock price correlations, although steps in this direction are outlined in The Econometrics 

of Financial Markets [CLM (1997)]. 

 

A possible third correlation does not really have a name, but we will call it the presence 

of turning points or trend reversal mechanism.  According to this idea, if we can 

identify the turning points or changes of trend of the price data, then this will be 

correlated with a future positive or negative trend.  In other words, if we can identify a 

point where the trend seems to change from negative to positive, then this should be 

correlated with a future positive trend, and a point where the trend seems to change from 

positive to negative should be correlated with a future negative trend.  Examples of these 

change-of-trend indicators in traditional Technical Analysis are identification of top and 

bottom formations such as head-and-shoulders.  However, we may also construct an 

oscillator-type indicator by taking the rate-of-change of the returns, which is itself a rate-

of-change of the log prices themselves.  In other words, the returns are the first derivative 

(velocity) of the log prices, while the turning point indicator is the second derivative 

(acceleration) of the log prices.  The hypothesis is then that this turning point indicator is 

correlated with future returns, at some point in the future.  However, this indicator may 

be less reliable than the first two, because it tends to emphasize the higher frequency 

modes, while most of the correlation seems to exist in the low frequency modes 

(explained in the next section). 

 

Smoothing and Stochastic Noise 

The Random Walk model may be thought of as a model in which each price movement 

is an independent random shock.  Such a random shock is presumably the result of some 

business development or news input regarding the security.  However, probably a more 

realistic model of stock price behavior is that it is due to random shocks occurring at 

infrequent intervals, and in between the shocks the price action is due to investor 

reaction to these shocks.  This investor reaction is not instantaneous, in the real world, so 

the market is not perfectly efficient.  The investors react to the shocks and the present 

state of the market with some finite time delay, which is of the order of the investment 

horizon of that investor.  Also, many investors do not know how to properly interpret the 

present condition of the market, so they over-react and cause prices to swing above or 

below their “fair value”.  This combination of inefficiencies should cause some sort of 

dynamical behavior of asset prices in response to the shocks due to external influences, 

such as the state of the company itself or of the overall economy, or political events.  So, 

we have a set of shocks, with large shocks occurring at infrequent intervals, and smaller 

shocks occurring more frequently, according to some power spectrum, say, and a 

dynamical reaction to the shocks, which is delayed in time according to the time horizon 

of each investor.  So the result is a spectrum of unpredictable random shocks, and of 

predictable dynamical responses to those shocks.  It is these dynamical responses that 

Technical Analysis hopes to capitalize on by means of various indicators.  But the point 

is that, due to the finite response time of investors, the deterministic part of the price 



patterns are, to some extent, smooth and slowly varying.  (For a partial theory of 

correlation in price tick data, see The Econometrics of Financial Markets [CLM (1997)].) 

 

Hence we may postulate a model for stock price action.  It consists of a deterministic 

part, which can be predicted (in principle, if not in practice), which is smooth and slowly 

varying, and hence consists of the lower-frequency Fourier components of the returns 

process.  To this is added a random part, which may be modeled as stochastic white 

noise, with a constant spectrum.  Thus most of the high-frequency variation of prices is 

random, stochastic noise with very little predictive power.  (However, an exception to 

this is the apparent anti-correlation of returns over time intervals of a few days.)  In order 

to uncover the predictable, deterministic part, it is necessary to employ smoothing to 

filter out the high-frequency components.  Otherwise, the small correlations in the low-

frequency deterministic part are completely drowned out in the high-frequency noise and 

cannot be seen.  This is probably why it has been found so many times that the stock 

price data are statistically a Random Walk, and no clear deviations from the Random 

Walk can be seen by the classical statistical tests.  After smoothing the data, however, we 

do find some clear indications of usable correlations, although it should be emphasized 

that these are hardly ever very far above the level of the stochastic noise.   

 

At present there are three main types of smoothing used in the QuanTek program.  The 

main type of smoothing used is called the Savitzky-Golay smoothing filter.  This is a 

state-of-the-art digital smoothing filter, which has the property that it preserves the first 

and second moments of the price data.  (In other words, if there are peaks in the data, the 

smoothing preserves the positions of the peaks and also their widths.)  This filter uses 

Fourier methods to compute the smoothing, and it turns out that it can also be used to 

make an extrapolation into the future based on the past data.  Essentially, the filter 

decomposes the data set into its Fourier components, filters out the high frequency 

components, and then the extrapolation consists of extending the low-frequency 

components that are left forward in time, preserving their phase relationships.  It appears 

that this extrapolation itself has predictive power, indicating that these low-frequency 

components persist in time, at least out to one wavelength or so for each component.  The 

Savitzky-Golay smoothing filter itself comes in two variants, the acausal and causal 

filters.  The acausal filter smooths over a time window consisting of a number of days in 

the past and future around the given day, equal to the smoothing time period.  (Hence, 

half the period of the dominant cycle is equal to two smoothing periods.)  This acausal 

filter should have the advantage that it preserves the phase relationships of the various 

Fourier components.  The causal smoothing filter smooths over a time window equal to 

two smoothing periods in the past.  Hence there is an inherent time delay of 

(approximately) one smoothing period with the causal filter.  This causal filter will 

probably not preserve phase relationships, which is a disadvantage.  The third type of 

smoothing is the ordinary exponential Moving Average (MA).  This type of smoothing 

filter is also causal, in that it does not make use of any data in the future relative to the 

given day.  As is well known, the exponential MA also introduces a time delay of the 

order of one smoothing period (for a time scale of smoothing of two time periods).  

However, the exponential MA does not (itself) make any future extrapolation, even 

though technically it is a digital filter just like the Savitzky-Golay smoothing filter.  This 



is because it does not use the Fourier transform.  (We can, of course, make the future 

extrapolation using Linear Prediction or some other prediction filter.) 

 

The Savitzky-Golay digital filter also has the capability of computing the smoothed first 

and second (and higher) derivatives of the price data.  Thus using this filter we may 

directly compute the smoothed velocity and acceleration indicators mentioned above.  

Using the acausal filter, these smoothed velocities and accelerations should exhibit no 

time delay, and be in phase with the price data.  Using the causal filter, on the other hand, 

will introduce a time delay and the various Fourier components will be out of phase to 

some extent, which depends on the frequency and phase response of the filter.  This is 

why I prefer the acausal filtering to identify the buy/sell points.  The time delay of the 

causal filter depends on the order of the filter which is chosen, with the lowest order 

causal SG filter being equivalent to an ordinary (not exponential) MA.  The higher order 

causal SG filters still are causal and use only the past data, but they do not exhibit as 

much time delay, because it is compensated for in the way the data are smoothed.  In 

other words, within a block of data 2N+1 units long, the usual MA and lowest order SG 

filter fit the data to a constant average value within this block, but higher order SG filters 

fit the data to a straight line, parabola, and so forth.  This has the effect of essentially 

eliminating the time delay, although this time delay is eliminated through a polynomial fit 

to the data.  However, the phases of the various Fourier components are still evidently not 

preserved using the causal filter, unlike the case of acausal filtering. 

 

Types of Technical Indicators used in QuanTek 

There are three main types of technical indicators used by the QuanTek program.  These 

correspond to the three main types of correlation mentioned above, namely return to the 

mean and trend persistence, plus turning point or trend reversal.  The first type of 

indicator is called the Relative Price.  This is a difference of the (logarithmic) price levels 

with smoothings on two different time scales, the shorter time scale minus the longer 

time scale.  This is similar to the oscillator consisting of the difference of two exponential 

MAs mentioned previously (except without the time lag).  This type of indicator is a 

measure of the return to the mean mechanism, with the longer time period smoothed 

price level playing the role of the mean level.  When the shorter time period smoothed 

price level is below the longer period one, the future prices are expected to rise, and when 

it is above, the future prices are expected to fall.  There is a certain time delay here, 

which is of the order of the shorter smoothing time period, in which the trough or peak of 

this indicator now implies that the future returns will be positive or negative later, 

roughly by this time delay.  So there is a phase difference between the Relative Price 

indicator and the future returns that it is supposed to predict.  The negative of this 

indicator leads the expected future returns by approximately one time period. 

 

The second type of indicator is called the Velocity.  It is the smoothed first derivative of 

the log prices, or the difference of two smoothed first derivatives with different time 

scales.  This is the kind of indicator, which is normally called a Momentum indicator, but 

we reserve the term Momentum indicator for any indicator that is supposed to be 

positively correlated with returns, not just the Velocity.  It is clear that if the trend is 



persistent, then the smoothed velocity of the log prices should be correlated with the 

returns.  The smoothed velocity now should be correlated with the returns now and in the 

immediate past and future.  So the Velocity indicator is in phase with the returns.  The 

Velocity indicator may be constructed directly by using the Savitzky-Golay smoothing 

filter.  It may also be constructed by taking an exponential MA of the log price returns 

rather than the log prices themselves (and then compensating for the time lag). 

 

We may also construct a third type of technical indicator that is called the Acceleration.  

It is the smoothed second derivative of the log prices or the difference of two smoothed 

second derivatives with different time scales.  This indicator may be interpreted as an 

indicator of turning points, because the second derivative is positive when the prices are 

at a minimum (positive or upward curvature) and is negative when they are at a 

maximum (negative or downward curvature).  Hence it can be seen that this Acceleration 

indicator will be positive when the Relative Price is negative, and vice-versa.  Thus the 

Acceleration indicator is exactly out of phase with the Relative Price (with acausal SG 

smoothing).  However, the Acceleration differs from the Relative Price in that, with each 

successive derivative, the high frequency components are emphasized more and more.  

Hence the Acceleration indicator contains much more high-frequency components than 

the Relative Price and hence is much less smooth.  Evidently, after a minimum of the 

prices, we expect the future returns to become positive and reach a maximum after a 

certain time delay, which is roughly one smoothing time period.  But at the minimum the 

smoothed returns are zero (by definition of a minimum), and the Acceleration is at a 

positive peak.  So the Acceleration is out of phase with the returns by roughly one 

smoothing time period, and this indicator leads the returns.  The Relative Price, being out 

of phase with the Acceleration, therefore lags the returns by one smoothing time period. 

 

Normally, short-term trading presumes some kind of cyclic or oscillatory behavior of the 

prices.  The goal is to buy at price minima, and sell on price maxima, on some arbitrary 

time scale.  Also, the Savitzky-Golay smoothing method, and all others, is fundamentally 

based on the concept of Fourier analysis.  The smoothing filters out the higher-frequency 

components of the signal, which have a period shorter than the smoothing time scale, 

leaving only the lower-frequency components.  Then, on this smoothing time scale, the 

dominant frequency is the highest frequency that is left, which has a period of, let us say, 

four time periods (if the smoothing time scale is two time periods, corresponding to half a 

cycle).  Then all the above indicators have an oscillatory behavior with a period of four 

smoothing time periods.  Then we may specify the phase relationships between these 

indicators.   

 

Momentum Indicator 

We define a Momentum indicator as any function of the past prices that is supposed to 

show a positive correlation with future returns.  The display of the Momentum indicator 

should be such that it is in phase with the Velocity, and hence the returns.  The value of 

the Momentum indicator for each day may then be interpreted as our estimate, based on 

past price data, of the return for that day.  This then translates directly into Trading 

Rules.  The position should be varied according to the returns to be expected, so the 



position should be positive when the Momentum indicator is positive, and should be 

negative when the Momentum indicator is negative. 

 

Velocity Indicator 

We have just seen that the Velocity indicator is in phase with the returns, so it is itself a 

Momentum indicator.  The estimate of the Velocity indicator for future returns, up to N 

days in the future, based on the Price Projection, provides the values of the Momentum 

indicator up to N days in the future.  We may also subtract the Velocity two smoothing 

time periods in the past, since it should be out of phase with the present returns.  This 

delayed negative Velocity indicator is then also a Momentum indicator.  The negative 

Velocity at the present time should then be correlated with the future returns two time 

periods in the future. 

 

Acceleration Indicator 

The Acceleration indicator leads the present returns (Velocity) by one-quarter cycle, or 

90 degrees, so it is one smoothing time period ahead of the returns.  The Acceleration 

should therefore be in phase with the future returns one time period in the future.  Hence 

the Acceleration one time period in the past is a Momentum indicator, since it will be in 

phase with the returns.  In other words, to form a Momentum indicator from the 

Acceleration indicator, we take values of the Acceleration indicator N days in the past, 

where N is the smoothing time period. 

 

Relative Price Indicator 

As for the Relative Price, we could also reverse the sign of this indicator and take its one 

time period (N-day, 90 degrees) delayed values to get a Momentum indicator, since it 

would then be in phase with the Acceleration.  As it stands, the Relative Price should be 

one time period behind the present returns, and hence the N-day future projection of the 

Relative Price should be in phase with the returns.  Thus the one time period future 

projection of the Relative Price is also a Momentum indicator.  We may extrapolate all 

of these indicators into the future (still using only past data) by making some sort of 

extrapolation of the prices.  This may be done using a Linear Prediction filter of some 

sort, or it may actually be done using the Savitzky-Golay smoothing filter itself, just by 

using a linear trend-line extrapolation and then smoothing.  (We can construct a technical 

indicator using any function of the data we want, including future extrapolations, so long 

as we use only past data.  This includes future extrapolations using Linear Prediction or 

other types of digital filters.)  Then, using this extrapolated technical indicator, we may 

take its extrapolated values one time period in the future, minus the value one time period 

in the past, for the Relative Price indicator, to be our Momentum indicator corresponding 

to Relative Price.  In reality, the phases indicated here are only approximate, and the best 

correlations will be obtained by adjusting these phases for each individual stock. 

 



Buy/Sell Signals 

It is implicit in the above definitions that the Momentum indicators reach a positive peak 

when the expected return is maximum.  In other words, the Momentum indicators are 

supposed to be surrogates for the expected returns at each point in time.  The optimum 

trading rules are to be long when the returns are positive, and short when the returns are 

negative.  Thus, the optimum buy point is just when the Momentum indicators are 

crossing zero from negative to positive [Z+], and the optimum sell point is when the 

Momentum indicators are crossing zero from positive to negative [Z–].  More precisely, 

an optimal strategy would be to vary the position daily so that the position is proportional 

to the value of the Momentum indicator.  In QuanTek a weighted sum of three 

Momentum indicators is taken and called the Trading Rules indicator.  Then the buy/sell 

points are the positive/negative zero crossings [Z±] of this indicator.  A continuously 

varying optimal trading position is also specified which is proportional to the value of the 

Trading Rules indicator, and ranges from somewhat greater than +100% to somewhat 

less than –100%.  It is also easy to vary the trading strategy by simply looking at the 

Trading Rules and Momentum indicators, since these indicators are supposed to 

represent estimates of the (past and) future returns.  You can then vary your trading 

strategy in accordance with these estimated future returns. 

 

Example – MACD 

One of the most basic examples of an oscillator that (reputedly) forms a Momentum 

indicator is the ordinary MACD [Pring (1991)], or difference of two MA’s of 

(logarithmic) prices.  Moving averages (let us say exponential ones) are used as technical 

indicators by superposing two MAs with different time scales of averaging.  When the 

shorter time scale MA crosses the longer time scale MA moving upward, this is taken as 

a buy signal, and when it crosses moving downward, this is a sell signal.  Hence, forming 

an oscillator consisting of the difference of the two MAs, the buy/sell points are marked 

by the zero crossings upward/downward, respectively.  If there were no time lag with 

moving averages, then the oscillator so formed would be classified as a Relative Price 

indicator, because it is the difference of two smoothed prices, and the buy points would 

be the minima of this indicator, and the sell points the maxima.  However, there is a time 

lag of roughly one smoothing time unit, where the smoothing time scale is two such 

units, and the dominant cycle hence has a period of roughly four time units.  Thus there is 

a time lag of roughly 90 degrees, or one-quarter cycle.  Since the Relative Price indicator 

already lags by one time unit the Momentum indicator (with acausal smoothing), this 

means that the MACD will lag the Momentum by two time units.  Hence it should be out 

of phase with the Velocity indicator by 180 degrees.  This means that, for trading on 

cycles of four time units period, the MACD is exactly out of phase with the correct 

trading signals.  As a check, we wish to buy at price minima and sell at price maxima.  

The MACD corresponds to these minima and maxima, except delayed by one time 

period.  Due to the delay of one quarter cycle, the downward zero crossing of the MACD 

(which is ahead of the price minimum) will be lined up with the actual price minimum, 

implying a buy point, and the upward zero crossing of the MACD (which is ahead of the 

price maximum) will be lined up with the actual price maximum, implying a sell point.  

But this is exactly opposite to the trading signals that we are supposed to use!  Evidently, 



the traditional use of the MACD is confined to long-term trends that are much longer 

than the shorter smoothing time period, so that this indicator will be approximately in 

phase for these long-term cycles.  But this illustrates that perhaps traditional Technical 

Analysis has been too cavalier about preserving the correct phase relationships between 

technical indicators and actual prices moves! 

 

Trading Rules and Phase Relationships 

As for trading rules, these are based directly on the Momentum indicators.  The goal is 

to buy at price minima, when the Velocity (as estimated by the Momentum indicator) is 

going through zero and increasing.  Similarly, we want to sell at price maxima, when the 

Velocity (and Momentum) is going through zero and falling.  So we time our optimal 

buy-sell points at these upward/downward zero crossings of the Momentum indicators.  

The amount to buy or sell is given by the average value of the Momentum indicator 

between these zero crossings.  This average value must be estimated from the future 

extrapolation of the indicator, based on Linear Prediction or some other type of 

prediction filter.  Or the amount to buy and sell can simply be taken to be a constant, as in 

traditional Technical Analysis.  Or, the amount invested can be varied on a daily basis, 

and made proportional to the daily value of the Momentum Indicator, or of some non-

linear function of it such as the hyperbolic tangent function or error function.  In the 

QuanTek program, the trading rules are based on the daily value of the Trading Rules 

indicator, which is in turn formed from an adjustable sum of the three custom 

Momentum indicators that you can design for yourself.  Then, given the daily 

recommended position in terms of the daily value of the Trading Rules indicator, and the 

optimal buy/sell points, traders can make their own decision as to actual amounts to buy 

and sell on any given day. 

 

In practice, the phase relationships between these indicators and the future returns are not 

exactly known.  It depends partly on the actual frequency and phase response of the 

Savitzky-Golay and other digital filters that are used to construct the indicator.  Also, the 

above analysis was based on the premise of using the acausal Savitzky-Golay smoothing 

filter, which has no inherent time delay.  We can also use a causal Savitzky-Golay 

smoothing filter, or the exponential Moving Average smoothing, which is also causal.  In 

the case of a causal smoothing, there will be another time delay roughly of the order of 

the time period of the smoothing.  So we must take into account this time delay, and take 

values of the indicator a number of days in the future equal to this time delay, in 

constructing our Momentum indicator.  Thus, using the causal smoothing filter, the 

Acceleration should now be roughly in phase with the future returns, and the Velocity and 

Relative Price indicators must use values from their future extrapolations, by one and two 

time periods respectively.  (Of course, to compute the acausal smoothing itself requires 

this future extrapolation, since it uses future values as well as past values.)  However, we 

still cannot be sure of the exact phase relationships even after all this.  So a provision is 

made in constructing the indicators to make adjustments to the phase of the indicators, so 

that the indicator is adjusted to be in phase with the “future” returns (so that the 

correlation is at a maximum) over the past data set.  Then the hope is that the indicator 

will remain in phase with future returns for some time into the future.  Evidently this 



phase relationship can persist for roughly of the order of one smoothing cycle at least, 

although we have not proven this. 

 

We may summarize the trading rules for the various types of indicators in the following 

table.  This table lists the (approximate) buy points and sell points at various points of the 

two types of indicators, both for acausal SG and exponential MA (causal) indicators.  The 

buy/sell points will occur either at a maximum (max), a minimum (min), an upward zero 

crossing (Z+), or a downward zero crossing (Z–) of the indicator.  The phase lead (+) or 

lag (–) of the indicator relative to returns is in units of the smoothing time period, in 

which four smoothing time units make up the period of the dominant cycle.  The sign in 

front of the indicator shows whether the positive or negative indicator is used: 

 

Indicator Smoothing Lead/Lag Buy Point Sell Point 

(+) Relative Price Acausal SG –1 unit min max 

(–) Relative Price Acausal SG +1 unit max min 

(+)Velocity Acausal SG 0 Z+ Z– 

(–)Velocity Acausal SG ±2 unit Z– Z+ 

(+)Acceleration Acausal SG +1 unit max min 

(–)Acceleration Acausal SG –1 unit min max 

(+) Relative Price Exp. MA ±2 unit Z– Z+ 

(–) Relative Price Exp. MA 0 Z+ Z– 

(+)Velocity Exp. MA –1 unit min max 

(–)Velocity Exp. MA +1 unit max min 

(+)Acceleration Exp. MA 0 Z+ Z– 

(–)Acceleration Exp. MA ±2 unit Z– Z+ 

 

If the indicator leads the returns, then a Momentum indicator may be constructed by 

taking past values of the indicator, by approximately one time unit.  Similarly, if the 

indicator lags the returns, then future extrapolated values of the indicator must be used to 

construct a Momentum indicator.  (Or, you can use past values in such a way that the 

Lead/Lag is shifted by a multiple of –4.  It appears that these past values are usually 

more reliable than the future projected values in most cases.) 

 

Note that the causal SG filter, which is not shown, will have a time lag that is 

somewhere between that for the acausal SG filter and the exponential MA filter.  If it 

were a zero-order filter, it would be equivalent to a simple MA, and hence would have a 

time lag (roughly) the same as the exponential MA.  However, since we are actually 

using the fourth-order filter in QuanTek, the time lag should be roughly the same as that 

for the acausal SG filter.  Hence, when using the causal SG filter, it will probably be 

necessary to tweak the lead times of the indicators for best results. 

 

The summary is that the Velocity indicator is the most direct measure of the current trend 

of the future returns.  The Acceleration indicator is the most direct measure of the 

oscillatory behavior of the prices at the chosen smoothing time scale, and also depends 

mostly on past values of the indicator (as opposed to future extrapolated values).  It is 

hence a useful timing indicator for the buy/sell points.  The Relative Price indicator is the 



smoothest and the best indicator for the slowly varying drift of the price level.  It also 

depends most heavily on the future price extrapolation based on the Linear Prediction, 

Savitzky-Golay, or other prediction filter.  This is the indicator that gives the best 

indication of the long-term trend of price action. 

 

Technical Indicators Dialog 

The Technical Indicators dialog is available from the Correlation Test dialog, by 

clicking the Indicator button.  The Correlation Test dialog box is available from the 

toolbar when you open each Main Graph of a stock data file, and also from the 

Correlations – Stocks dialog box.  The Technical Indicators dialog box enables you to 

build a technical indicator, which is then tested for correlation with future returns in the 

Correlation Test dialog.  You can also build the three Momentum Indicators, which 

are displayed in the three panes of the Technical Indicators splitter window.  The 

weighted sum of these three Momentum Indicators then make up the Trading Rules 

indicator, which is displayed in the bottom pane of the Trading Rules splitter window.  

The buy/sell signals and buy/sell points are then derived from this Trading Rules 

indicator.  They are the positive going and negative going zero crossings of this 

indicator, respectively.  Slider bars in the Trading and Portfolio Parameters dialog box 

set the weights for the sum of the three Momentum Indicators. 

 

The Technical Indicators dialog box enables you to construct a technical indicator using 

one of three types of smoothing filters, which are acausal Savitzky-Golay smoothing, 

causal Savitzky-Golay smoothing, and Exponential Moving Average.  You can 

construct an indicator of one of the three types described above, which are Relative 

Price, Velocity, and Acceleration.  The indicator may be constructed with a positive 

sign, a negative sign, or the difference of two contributions of different time scale.  For 

each such contribution or part of the indicator, you can choose the smoothing time scale 

for the filter, and the lead-time, which adjusts the phase.  So this pretty much exhausts 

the possibilities for oscillator-type indicators that can be constructed from past stock data. 

 

In the Technical Indicators dialog box, you can also choose various combinations and 

types of Linear Prediction filter with the Fractional Difference filter.  You can also set 

the fractional difference parameter of the Fractional Difference filter.  It is very 

important that all indicators and displays use the same type of filtering with the same 

time scale and fractional difference parameter.  Hence these settings apply to all the 

displays and indicators at once. 

 

Correlation Test Dialog 

The Correlation Test dialog is used to test the indicator built in the Technical 

Indicators dialog for correlation with future returns.  The Correlation Test dialog can 

be called from the toolbar of each Main Graph, or from the Correlation – Indicators 

dialog, which itself is available from the Main Window toolbar (or from the opening 

dialog when you first open QuanTek).  From the Correlation Test dialog, you can call 

the Technical Indicators dialog to build a technical indicator, as described above. 



 

The Correlation Test dialog has a graph, which ranges from –100 days to +100 days, 

with ZERO at the center of the graph.  The vertical scale of the graph ranges from –100% 

to +100% correlation.  When you construct a technical indicator, it is a function ( )f n  

of the past data, relative to the present, which corresponds to 0n  .  Negative values of n 

correspond to the past, and positive values of n correspond to the future.  However, no 

future data are used to construct the technical indicator.  The future values are 

constructed from the past data by means of the prediction filters, consisting of the 

Fractional Difference filter and the Linear Prediction filter.  In addition, the Savitzky-

Golay smoothing filter itself functions as a prediction filter, out to about N days, where 

N is the smoothing time scale.  Then, for each value of n ranging from –100 days to +100 

days, the correlation of ( )f n  with the returns over some time interval is computed.  To 

compute the correlation, the technical indicator is computed with each day in the past as 

the present day, and the correlation with the future relative to that present day is 

computed (one term for each different “present” day).  The result is a value of correlation 

between ( )f n and future returns for each value of n in the specified range.  This 

correlation for each value of n is then displayed in the graph. 

 

There is a list box for changing the Time Horizon, which is the number of days of daily 

returns over which the correlation is computed.  The correlation between the future 

returns over this time horizon is computed with a simple average of the corresponding 

number of future days of the technical indicator.  This then should preserve the phase of 

the technical indicator for varying time horizons.  There is also a spin button that you can 

use to set the lead-time.  This merely adjusts the phase of the technical indicator by 

shifting it left or right.  The goal is to determine the amount of lead-time, or phase shift, 

necessary to bring the (positive) peak of the correlation graph under the ZERO line in the 

middle of the graph.  This then corresponds to the maximum degree of correlation 

between the technical indicator and the future returns.  Then the technical indicator fits 

the definition of a Momentum indicator, which means that the technical indicator is 

maximally correlated with the returns.  (If the lead-time is not zero, you can go back to 

the Technical Indicator dialog and build this lead-time into a revised technical indicator.) 

 

The Correlation Test dialog box also computes some numerical quantities of interest.  

First, the actual value of the correlation under the ZERO line is displayed.  The 

standard error is displayed, which depends on the number of data points.  The average 

N-day volatility for the stock data returns is displayed.  From these numbers, a 

theoretical estimate of the annual simple and compound gain is computed, using the 

formula given in the Appendix below (daily correlation times daily volatility times 256 

for simple returns).  This gives you an idea of the theoretical gains possible with a given 

degree of correlation, given the volatility of the returns for that stock.  There is also a set 

of radio buttons to change the vertical scale of the graph, but the scale is changed 

automatically anyway, so you usually don’t need to do it yourself.  Finally, the 

correlation can be re-computed using any of the three methods described in the 

Appendix, namely the Pearson’s R, which is the normal method, and the two robust 

methods, which are Spearman Rank-Order and Kendall’s Tau.  (However, note that 



the actual gains to be obtained in trading are related to the Pearson’s R method of 

correlation, not to the others.) 

 

Correlations – Indicators dialog 

This dialog box is accessed through the Main Window toolbar.  It displays a scatter 

graph of the correlation between any given stock future returns data and a technical 

indicator constructed from that data.  The stock is chosen by clicking the Stock Data 

button, which opens an Open File dialog.  The technical indicator is chosen by clicking 

the Indicator button, which opens the Technical Indicator dialog box (described above).  

The scatter plot is then displayed, and the correlation and confidence level according to 

all three correlation methods are also displayed. 

 

If you click the Display button, this opens the Correlation Test dialog box, described 

above.  You may then view the correlation between the technical indicator and future 

returns for each value of lead-time from –100 days to +100 days.  (The scatter plot only 

displays the correlation for ZERO lead-time.)  The Technical Indicator dialog is also 

accessible from the Correlation Test dialog box.  So this is a second method to access 

the Correlation Test and the Technical Indicator dialog boxes. 

 

Correlations – Stocks Dialog 

This dialog box is accessed through the Main Window toolbar.  It displays a scatter 

graph, similar to the one in the Correlations – Indicators dialog, but this time the 

correlation is between the returns of two different stocks.  You choose the two stocks 

using the Data 1 and Data 2 buttons, which both open an Open File dialog.  The three 

types of correlation and their confidence levels are displayed as in the other Correlation 

dialog box. 

 

If you click the Display button, this shows another dialog box, which contains a set of bar 

graphs of the correlation between the two stocks, as a function of time lag.  The time lag 

is just the time difference, in days, between the returns that are compared in the 

correlation test.  One graph for positive time lags and one graph for negative time lags are 

displayed.  If you choose the same stock for both of the two stocks, then you can view the 

autocorrelation of the returns of that stock.  In that case, the two bar graphs for positive 

and negative lags will be the same.  If you change the time scale for the correlation to N 

days, then the correlation between N-day returns is computed.  In this case, the bars of the 

bar graphs become N pixels wide rather than just one pixel wide. 

 

This Correlation – Stocks dialog is useful for comparing the degree of correlation 

between different stocks for the purpose of portfolio selection.  It is also useful for 

general studies of the correlation structure of the stock returns data.  For example, when 

studying the autocorrelation of daily returns, if you look closely you can see that the 

autocorrelation for the first three days of lag is almost always negative.  Often you can 

also spot what look like cycles in the correlation structure, with periods in the 

intermediate-term range of, say, one to several months. 



 

Periodogram Dialog 

This dialog box incorporates the standard Periodogram test of Time Series Analysis.  

The Periodogram is a method for measuring the spectrum of a time series, in this case 

stock returns data.  A description of this test can be found in many standard textbooks, 

such as Brockwell & Davis (1991).  The Periodogram Method is basically a Fourier 

transform of the stock returns data, and displays the amplitude of each frequency 

component, in steps of the lowest frequency, up to the Nyquist frequency (with period 2 

days).  For comparison, a second method of spectrum estimation, called the Maximum 

Entropy Method, is also displayed.  This method relies on the Linear Prediction filter.  

The LP filter coefficients are computed from the returns data, then the ME method 

estimates the spectrum from these coefficients.  It can be seen that the results are pretty 

similar in both cases. 

 

According to the theory of the Periodogram, it must be smoothed on some time scale.  

If it is left unsmoothed, the standard error of each Fourier component is roughly 100% of 

the amplitude of the component.  After smoothing on a time scale of N days, the standard 

error of the smoothed Fourier component is roughly 1 N .  The default smoothing is set 

at 6 days, but you can change to a wide range of smoothing time intervals using a list 

box.  Please consult a standard text for an explanation of the necessity for smoothing the 

Periodogram. 

 

There are many peaks and valleys in the observed spectrum, but unfortunately it is not 

possible to show conclusively that these are any different from a random result.  To 

demonstrate this, the Periodogram can be viewed using only random Gaussian data, 

generated by a random-number generator.  To view the random data, click the Random 

button.  Each time you click this button, a new set of random data is generated, and 

displayed in the two windows.  The stock returns are displayed in dark red, while the 

Gaussian data are displayed in blue.  Clicking the same button, which now reads 

Restore, returns to the same stock data.  So you can repeatedly compare the stock data 

Periodogram with that of the random Gaussian data, with a new set of random data each 

time, just by repeatedly clicking this same button.  It can be seen that the random 

Gaussian data also displays the same type of peaks and valleys, so it can be concluded 

that, whatever correlations are present in the stock data, this test is not very sensitive to 

them. 

 

Also included in this dialog box are two standard statistical tests.  The Kolmogorov-

Smirnov test [NR (1992)] compares the spectral distribution of the Periodogram to a 

constant distribution.  It then computes the confidence level that the spectrum is 

different from a constant distribution.  This can be interpreted as the probability that the 

spectrum was not obtained from a random Gaussian distribution by random chance alone.  

It will be observed that, using the random Gaussian data, this confidence level ranges 

from 0% to 100%, and is distributed roughly equally over this range.  This is what you 

would expect from a purely random result.  The Fisher’s test [Brockwell & Davis 

(1991)] computes the confidence level for a periodic component in the spectrum.  This 



is used to determine the probability that an observed cycle in the data is not obtained 

from a random Gaussian distribution by random chance alone.  It will likewise be seen 

that, using the random Gaussian data, this confidence level also ranges from 0% to 100%, 

and is also distributed roughly equally over this range.  It would be interesting to run 

these two tests over a collection of stock data files, and observe whether or not the 

distribution of the confidence levels of the two tests is still constant from 0% to 100%. 

 

Appendix:  Definition of Correlation 

The standard definition of linear correlation of two random variables, called Pearson’s 

R, is given by [NR (1992)]: 
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Here, x  and y  are the mean values of the two random variables.  There are two other 

types of correlation, which are called robust correlations, which are the Spearman 

Rank-Order and Kendall’s Tau.  These are called nonparametric methods of computing 

correlation because, unlike the linear or Pearson’s R correlation, they do not presuppose a 

Gaussian distribution of the random variables.  The Spearman Rank-Order correlation is 

the linear correlation of the ranks, as opposed to the linear correlation of the values of the 

variables as in linear correlation.  To compute the ranks, the values are arranged in 

increasing order, and the order of each value is its rank.  Kendall’s Tau uses the 

correlation of the numerical order of the ranks (greater than, less than, or the same), as 

opposed to the difference in value of the ranks as in Spearman Rank-Order.  These two 

robust methods are more reliable when the distribution of the random variables is non-

Gaussian, and in particular when the distribution has “fat tails” as is the case with most 

financial data. 

 

However, for our purposes a modified definition of correlation is more suitable.  The 

problem with the above definition is that it breaks down when the buy-and-hold strategy 

is considered.  To be specific, one of the above random variables will represent the future 

returns, and the other will represent the trading rules, or amount to be invested in a short-

term trading strategy.  If s is the number of shares, and p  is the actual returns (change 

in price per share), then the expected (simple) gain g, in dollars, is given by (summed 

over the trading days in a given time interval): 
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For y in the correlation formula we may use the logarithmic returns as a conservative 

estimate for the actual returns: 
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The amount invested, in dollars, at time i is given by: 

      #shares price per share dollar amount investedd s p    
 

Thus we have: 
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For the annualized simple gain we sum over the number of trading days in a year, 

assuming we are dealing with daily returns, which may be taken to be 256 days. 

 

The trading rules variable x is defined as the dollar amount invested at any given time, 

relative to the average amount of equity invested over the time period.  This average 

equity can be either long or short, so the average equity invested is given by the average 

absolute value of the dollar amount invested over the time interval: 
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Here we define the average absolute value of the dollar amount invested over the time 

interval by: 
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The average absolute value of the equity invested, as a percentage of the total equity 

available to invest, is called the average percent margin.  To compare measured 

correlations to measured returns from trading rules, we normalize the average percent 

margin to 100%.  In other words, the normalized gain, denoted g , will be given by the 

annualized simple gain divided by the average absolute value of the dollar amount 

invested. 

 

However, the correlation is expressed in terms of the root mean square of the trading 

rules, not the average absolute value of the trading rules (which is defined to be unity).  

We need to convert between one and the other.  This is straightforward if we assume the 

random variables are distributed according to a Gaussian distribution.  Denoting a 

Gaussian random variable by z, with standard deviation , it is well known that the 

Gaussian distribution (assuming N  ) is normalized as follows: 
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The r.m.s. value of z is then given as the square root of the mean value of 
2z , which (the 

latter) is defined to be the variance: 
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The average absolute value of z, on the other hand, is given as follows: 
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Thus we have the following general relationship between the average absolute value of a 

Gaussian variable and its standard deviation (root mean square value): 
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
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Thus when any quantity is normalized to unit average absolute deviation (dividing by the 

average absolute deviation), it will be about 25% greater than when it is normalized to 

unit standard deviation (dividing by the standard deviation). 

 

Thus the annualized gain, normalized to unit margin (average absolute amount of dollars 

invested) will be given by: 
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This may be rewritten using the definition of the gain given above (renormalizing di in 

numerator and denominator by dividing by the average absolute deviation): 
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We may now use the inequality give above to rewrite this in terms of the logarithmic 

returns yi: 
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Taking into account that there are 256 trading days in a year, we find: 
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Let us denote the average volatility, by which we mean the r.m.s. value of the logarithmic 

returns, by : 

 
2 root mean square logarithmic volatilityiy  

 
 

We may then define our modified correlation, as follows: 
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In other words, the modified correlation is the regular correlation with the mean values of 

the variables not subtracted off.   



 

The annualized gain, normalized to unit margin, is the expected dollar gain divided by the 

average absolute amount of dollars invested.  It is thus given in terms of the quantities 

defined above by: 
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Thus the expected annualized simple gain, normalized to unit margin (unit average 

absolute amount of equity invested) is approximately given by the modified correlation 

multiplied by the average (r.m.s.) daily volatility of returns, times the number of trading 

days in a year and a numerical factor. 

 

Thus we see that the meaningful quantity for the estimation of trading returns is this 

modified correlation, computed as if the mean values of the variables were zero, rather 

than the standard definition of correlation.  In the ideal case of daily returns that are 

constant, the trading rules would be simply a constant amount invested, and then the 

modified correlation between the trading rules and the returns would be 100%.  On the 

other hand, according to the usual definition of correlation, the correlation would be 

indeterminate because the variance of both the trading rules and returns would be zero, 

both of these would be equal to their mean values, so there would be zero in both the 

numerator and denominator.  If, as often happens, the trading rules are nearly constant, 

then there would be very small quantities in both the numerator and denominator, and the 

computed correlation would be dependent on minute variations in the trading rules, 

which has very little to do with actual investment gains or losses.  The modified 

correlation, on the other hand, would register the gain or loss to be incurred from the 

nearly constant investment, so it is the appropriate measure of correlation to be employed 

here. 

 

The usual routines for measuring correlation [NR (1992)] use the data with the means 

subtracted off, so these routines must be modified to eliminate this subtraction of the 

means, resulting in the formula for the modified correlation given above.  The theoretical 

return is then computed as above, multiplying this modified correlation by the r.m.s. 

(logarithmic) volatility, times the number of trading days in a year and a numerical factor, 

which results in a number which is approximately the actual gain, for small values of the 

daily returns, and is always less than or equal to the actual gain (so it is a conservative 

estimate).   
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