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3.1 Need for Portfolio Optimization 

 The goal of the QuanTek program is to maximize returns and minimize risk in the 

portfolio. This is accomplished by a modification of the classical Markowitz method of portfolio 

optimization [SAB]. This method uses quantities that are estimated or measured from the price 

data of the securities in the portfolio, namely the expected future return and the standard 

deviation or risk. The expected future return is a quantity that must be estimated from some 

kind of Price Projection, which in QuanTek is provided by means of a Linear Prediction filter. 

The standard deviation is measured by taking a long-term average of the average absolute 

deviation and multiplying by a certain factor to convert it (assuming the Gaussian distribution) 

into the equivalent standard deviation. In a future version of QuanTek, we hope to utilize the 

Linear Prediction method to estimate a time-varying future standard deviation, implementing a 

form of a GARCH (Generalized AutoRegressive Conditional Heteroskedasticity) [G] model. 
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 In QuanTek the portfolio is optimized for a given trading time horizon, and the future 

returns are estimated for each security for this time horizon. As just stated, the standard 

deviation of each security is also measured, taking a long-term average of past returns. A third 

quantity that is measured is the correlation of the returns between all the securities, forming a 

(symmetric) correlation matrix. From the standard deviation, the square is taken to obtain the 

variance for each security. Then from the variance of each security and the correlation matrix, 

the correlation matrix is multiplied by the variances to obtain the covariance matrix. The 

quantities in the portfolio optimization calculation, for a portfolio of M securities, are the M 

expected future returns mr  and the M by M covariance matrix 2

mn  (where the indices run 

from 1 to M). 

Given the fraction mf  of each security in the portfolio, the portfolio expected return r  

is the average over all the securities in the portfolio of the expected returns mr : 

1

M

m m

m

r f r


  

 On the other hand, the total variance of the portfolio is given in terms of the covariance matrix 

2

mn  by an average over all pairs of securities: 

2 2

, 1

M

m mn n

m n

f f 


   

In our application, we will be optimizing the portfolio utilizing the logarithmic returns rather 

than the actual returns. This means that the quantities mr are the logarithmic expected returns 

while the quantities 2

mn  are the covariances between the logarithmic past returns. This makes 

sense, because the price returns are expected to obey (approximately) a log-normal distribution. 

To then calculate the expected return and variance of the overall portfolio, we must convert these 

quantities to the actual expected returns and covariances, since the logarithmic returns are not 

directly additive. To do this, we assume that the log returns and log variances are additive over 

time, so the corresponding cumulative returns and variances are multiplicative. Then the square 

root of the cumulative variance is taken to obtain the standard deviation. 

An important consequence of this is the concept of portfolio diversification. From the 

formula for the portfolio variance we can see that it becomes smaller as the number of securities 

in the portfolio becomes larger, if the portfolio fractions are evenly distributed among the 
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securities. For example, if the variance of each security 2 2

mm   is the same and all the 

securities are uncorrelated, and the fraction of each security in the portfolio is also the same so 

that 1mf M , then the portfolio variance becomes: 

   
2

2 2 2 2
2

1

1 M equal securities
M

m mm

m

f M
MM


  



    

Hence we see that the total portfolio variance has been reduced by a factor M compared to the 

variance of each individual security. If the return of each security is the same, then the overall 

return is the same as the individual returns. Hence the risk of the diversified portfolio has been 

reduced while the return has remained the same.  

This is the essence of the portfolio optimization problem – to find the optimal 

distribution of the portfolio weights in the portfolio, with M different securities having different 

expected future returns and standard deviations, in such a way as to maximize the overall 

portfolio return while minimizing the overall portfolio risk. This optimization depends on a 

choice of risk aversion or its opposite, risk tolerance, which determines the relative importance 

of the returns vs. the risk. An investor with low risk tolerance, or high risk aversion, will 

sacrifice returns in order to reduce risk, achieving the highest possible safety in the portfolio. An 

investor with a high risk tolerance, or low risk aversion, is more speculative and is willing to 

maintain more risk in order to achieve more returns. The risk tolerance enters as a parameter in 

the portfolio optimization problem, leading to a range of optimizations from minimum to 

maximum risk tolerance. 

3.2 Outline of the Optimization Problem 

The portfolio optimization problem consists of calculating the fraction mf  of each 

security in the portfolio that results in the optimal portfolio, maximizing returns and 

minimizing risk. The fraction mf  can be positive, corresponding to a long position, or negative, 

corresponding to a short position. The portfolio optimization is calculated by maximizing a 

certain function of the returns and risk, which I call the Q-function, subject to a constraint.  

However, the nature of the constraint seems to make a big difference in the outcome. 

There are at least three possibilities. In the standard Markowitz optimization, the constraint is 

that the total value of the portfolio is held constant, with long positions counting as positive and 
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short positions as negative. If we count these positions as fractions of the total equity, the sum of 

the positions equals a constant fraction, which we interpret as a margin percent: 

 
1

Markowitz optimization
M

m E

m

f f


  

However, this approach leads to a result that is not entirely satisfactory. This constraint is not 

very realistic. It leads to a result consisting of a fixed portfolio whose total value is Ef , which is  

the portfolio of least risk. The other part of the portfolio is called the arbitrage portfolio and has 

a total value of zero. In this portfolio the investor can invest in unlimited equal long and short 

positions and maintain a total value of zero, leading to unlimited risk. Normally this would never 

be allowed because the risk must be covered by the equity in the account.  

Normally, in a margin account the short positions count toward the total equity in a 

positive sense, and must be covered by the equity just as are the long positions. Hence a more 

realistic constraint would be in terms of the sum of absolute values of the positions: 

 
1

Standard optimization
M

m E

m

f f


  

This is the realistic constraint, but it results in a very difficult problem to compute. The solution 

to this problem involves a method called constrained quadratic optimization, the solution to 

which was given by Markowitz [M]. (It is called constrained because the positions mf  are 

always constrained to be positive, if we do not allow short selling, as would be the case in a 

mutual fund portfolio, for example. Even if short selling is allowed, the absolute values in the 

constraint make the calculation much more difficult.) So for a practical portfolio calculation this 

is a difficult approach, but at least the constraint maintains the total absolute value of the 

investments in a margin account. 

There is a third possibility, however. The mathematics becomes a lot simpler if a 

constraint involving a sum of squares can be used, analogous to the squared length of a space 

vector as the sum of squares of its components. Then the individual positions are unconstrained, 

allowing short selling, yet avoiding the troublesome absolute values. This method I call 

unconstrained quadratic optimization. So I propose the following constraint on the portfolio 

weights: 

 
1

1 Quadratic optimization
M

m m

m

M f f


  
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This makes things easier because it does not involve the absolute values of the portfolio 

fractions, and also results in a better-defined optimization problem from the point of view of the 

Q-function. Notice that in all three optimization methods, if the total portfolio fraction of equity 

is set to 1Ef  , and you assume that all the security fractions are equal, then they are all equal to 

1mf M  of the total equity. Then the sum of all the fractions is unity and the portfolio is 100% 

invested. It turns out that when the positions are not all equal in the Quadratic optimization, the 

total of the absolute values Mf  is less than unity. However, I view this as desirable, actually, 

because it results in a less risky portfolio when the equity is not evenly distributed and the 

diversification is not complete.  

A side benefit, from the mathematical point of view, of the quadratic constraint is that if 

we ever want to diagonalize the covariance matrix, the constraint is invariant under an 

orthonormal transformation of the portfolio weights in the diagonalization. We might want to do 

this, for example, if we want to separate the portfolio into uncorrelated combinations or factors 

for use in a factor model. 

Markowitz Mean-Variance Optimization 

When the Markowitz portfolio optimization is performed, the result is a “convex cone” 

[G, p.132] of two portfolios (see below). The first portfolio is the one that minimizes risk, and it 

is called the fixed portfolio, because the total cost of this portfolio is fixed in the optimization. 

Given a certain amount of equity E available to the portfolio, we denote the (fixed) percentage 

allocated to the fixed portfolio by Ef . Then, for a portfolio with M securities, we have: 

(fix)

1

M

m E

m

f f


  

The other portfolio that results from the portfolio optimization is called the arbitrage portfolio, 

because it turns out to have zero cost. Thus we have: 

(arb)

1

0
M

m

m

f


  

We define a (positive) coefficient γ which we call the risk aversion. In principle, as will be 

shown below, this coefficient could range from zero to infinity, but we will limit it to a finite 

range, to be explained below. This coefficient determines the amount of the arbitrage portfolio in 
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the total portfolio. The total portfolio consists of the fixed portfolio plus the arbitrage portfolio. 

Thus the total portfolio may be written: 

(fix) (arb)

1

M

m m m m E

m

f f f f f


     

Given that the total cost of the portfolio is Ef , the margin leverage Mf  is given by the sum of 

the absolute values of all the positions: 

 
1 1

with
M M

m M m E E M

m m

f f f f f f
 

     

Since the total cost Ef  is fixed, the margin leverage Mf  must be allowed to vary, depending on 

the chosen setting for the risk aversion. Typically, in a normal margin account at the present 

time, the maximum allowable margin leverage is 200%. (However, we find that when this 

Markowitz method is used, the actual margin leverage Mf  can get very large, even while the 

total cost Ef  is held at a fixed percentage.) 

Unconstrained Quadratic Optimization 

In the case of unconstrained quadratic optimization, to be explained further below, 

there is no division of the portfolio into two separate parts. The Q-function is optimized subject 

to the following quadratic constraint on the weights mf : 

1 1

1 1
M M

m m m

m m

M f f f
 

     

As stated previously, if all the weights mf  were equal, then we would get 1mf M , and then 

the sum of the absolute values mf  is again unity. However, if the mf  variables are not all equal, 

the sum of the absolute values mf  is less than unity. Also, if we try to make the mf  variable as 

large as possible, by making one mf  much larger than all the others, we find that 1mf M due 

to the constraint. In that case we also have 
1

1
M

m

m

f M


 . So we arrive at the modified 

constraint on the absolute values of the mf  variables, which is implicit in the above definition: 

1

0 1 and 1 1
M

m m

m

f M M f


     
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This is actually a good definition for a mix of securities in a portfolio, because it helps ensure 

that the mix is balanced. Just as in the case of a mutual fund, in which the maximum equity that 

can be allocated to a single security is something like 5%, in the present case the maximum that 

can be allocated is 1 M , which for 25 securities (a rather large portfolio) will be 20%. 

However, if that were the case, then that single security would be the entire portfolio, so the 

margin leverage of the portfolio would also be 20%. 

 However, we would still like to be able to fix the amount of margin leverage Mf  in the 

portfolio. We can do this by renormalizing the above weights and defining the sum of the 

renormalized weights ˆ
mf  to be equal to the margin leverage: 

1

1

ˆ ˆ 0
M

m M
m m MM

m
m

m

f f
f f f

f 



   


 

We define the desired margin leverage Mf  of the portfolio to be in the range 0 200%Mf  . 

Thus to get the renormalized weights, such that the sum of their absolute values equals the 

desired margin leverage, we just divide the computed weights by the sum of their absolute 

values and multiply by Mf . The weights were optimized using the quadratic constraint, but then 

renormalized to obey the absolute value constraint instead. The results are in general different 

than those obtained by optimizing directly using the absolute value constraint, but this method 

seems to actually be better as well as easier. For outlier securities such as those with 

extraordinarily high returns or low risk, the weights for these securities will be accentuated 

compared to the Markowitz method. (Optimizing in terms of mean-absolute values instead of 

root-mean-square values is more robust.) For well-diversified portfolios the results should be 

nearly the same. 

3.3 Standard Mean-Variance Portfolio Optimization 

 Following Gouriéroux [G, p.130], the standard Mean-Variance optimization calculation 

due to Markowitz starts with the following Q-function: 

2

1 , 1 1

( ) with
2

M M M

m m m mn n m E

m m n m

Q f f r f f f f



  

      
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The quantities mf  represent fractions of the total portfolio, and obey the constraint (last equation) 

that the total equity in the portfolio adds up to 
Ef E , where E is some fixed dollar amount of 

money, and Ef  is the fraction of this equity. This cost function is then to be minimized by 

varying the weights mf . 

Gouriéroux introduces a Lagrange multiplier  and writes the Q-function as follows: 

2

1 , 1 1

( ; )
2

M M M

m m m mn n m E

m m n m

Q f f r f f f f


  
  

 
    

 
    

This is now minimized with respect to fm and . This leads to two equations: 

2

1 1

0 and
M M

m mn n m E

n m

r f f f  
 

      

We may then multiply by the inverse covariance matrix and solve for the quantities fn: 

 2

1 1

1
with

M M

n nm m m E

m m

f r f f 




 

     

Using the constraint we find: 

2 2

1 , 1 , 1

1M M M

E n nm m nm

n n m n m

f f r  


 

  

 
   

 
    

Then we can solve for the value of the Lagrange multiplier: 

2

2

2 2 2 2

, 1 , 1

1

where and

E

M M

nm nm m

n m n m

r f

r r

  


   





   

 

  
 

  

 

Finally the solution is: 

2

2 2

2 2
1 1

2 2 2 2

, 1 , 1

1

where and

M M
E

n nm nm m

m m

M M

nm nm m

n m n m

rf
f r

r r


 

 

   



 

 
 

   

 

 
   
  

 

 

 

 

We may write this as a sum of the two portfolios mentioned previously, the fixed portfolio and 

the arbitrage portfolio: 
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2

(fix) (arb) (fix) 2 (arb) 2

2 2
1 1

1
,

M M
E

n n n n nm n nm m

m m

rf
f f f f f r


 

 



 

 
 

 
     
  

   

We see that the fixed portfolio is proportional to the total equity fraction Ef , corresponding to a 

riskless portfolio, while the arbitrage portfolio is proportional to 1  , where γ is the risk 

aversion, and so corresponds to a risky portfolio. If the risk aversion parameter γ is taken to 

infinity, meaning the investor is maximally risk averse, the arbitrage portfolio goes to zero, and 

the portfolio is determined only by the fixed portfolio (in this limit). If the risk aversion 

parameter γ is taken to zero, meaning the investor has zero risk aversion, the portfolio is 

determined mainly by the arbitrage portfolio. The fixed portfolio depends on the inverse of the 

covariance matrix 2

nm  , and not on the estimated returns mr  at all. In fact, this portfolio is 

determined by the rows (summed over all columns) of the inverse covariance matrix. So, if the 

assets were totally uncorrelated, the weight of each asset would be proportional to the inverse of 

the variance of the asset, in a minimum risk portfolio. The arbitrage portfolio takes into account 

the expected returns, and hence involves risk. 

 If a sum is taken over all values of the index n, this gives the total (fractional) equity in 

the portfolio. It is easy to see that this sum is equal to Ef  for the fixed portfolio, and zero for the 

arbitrage portfolio. (This is why it is called an arbitrage portfolio.) It is possible to increase the 

fractions nf  of equity in the arbitrage portfolio by arbitrary amounts, in long and short 

positions in proportion, in such a way that the total value is still zero. However, this would not be 

allowed in practice because of the constraint on the absolute values of the positions. In a real 

portfolio, if the risky arbitrage portfolio is increased, the riskless portfolio would be decreased so 

as to maintain the constant margin leverage of the portfolio, which is the sum of the absolute 

values of the fractions nf . This is why the constraint of a constant portfolio value is an 

unrealistic constraint. 

Mean-Variance Optimization with a Riskless Asset 

If there is a riskless asset in the portfolio, such as cash or a money market fund, then we 

denote this asset with the zero index. Its risk-free return is 0r  and the fraction of it in the 

portfolio is 0f . Then the cost function to be minimized is [G, p.131]: 
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2

0 , 1 0

( ) with
2

M M M

m m m mn n m E

m m n m

Q f f r f f f f



  

      

In this case we can simply eliminate 
0f  using the constraint: 

2

0

1 1 , 1

( )
2

M M M

E m m m m mn n

m m m n

Q f f f r f r f f



  

  
     

  
    

This is now minimized with respect to fm. This leads to the equations: 

  2

0

1

( )
0

M

m n mn

nm

Q f
r r f

f
 




   


  

We again multiply by the inverse covariance matrix and solve for the quantities nf : 

 2

0

1 0

1
with

M M

n nm m m E

m m

f r r f f




 

     

This gives us the final solution: 

   2 2

0 0 0

1 , 1

1 1
and

M M

n nm m E nm m

m n m

f r r f f r r 
 

 

 

       

In this case, there is no clear separation between a fixed portfolio and an arbitrage portfolio. 

Rather, the riskless asset itself plays the role of the fixed portfolio. If   , then the entire 

equity fraction Ef  is in the riskless asset 0f . Otherwise, the fraction in the riskless asset is 

reduced and that in the rest of the portfolio is increased. Eventually, as the constant γ becomes 

small, the riskless asset will be sold short in order to purchase more of the risky assets, which 

does not make much sense. So in this case there is a practical lower limit to the risk aversion 

parameter γ, namely the value for which the fraction of the riskless asset 0f  is reduced to zero. 

Once again, this is a consequence of the assumption that the sum of the equity fractions in the 

portfolio is equal to the total equity fraction Ef . 

Statistical Properties of the Standard Mean-Variance Portfolio 

 Following Gouriéroux [G, p.133], we can calculate the expected return and variance of 

the optimal Mean-Variance portfolio, both without and with a riskless asset. For the case of no 

riskless asset, the total portfolio is a sum of two portfolios, one the fixed portfolio and the other 

the arbitrage portfolio. We start with the previously derived weights for these portfolios: 



 - 11 - 

2

(fix) (arb) (fix) 2 (arb) 2

2 2
1 1

1
,

M M
E

n n n n nm n nm m

m m

rf
f f f f f r


 

 



 

 
 

 
     
  

   

The expected returns of these two portfolios are then given by: 

   
2

2 2

(fix) (fix) (arb) (arb) 2

2 2
1 1

2 2 2 2 2 2

, 1 , 1 , 1

1
,

where , ,

M M

n n n E n n n

n n

M M M

nm nm m n nm m

n m n m n m

r r
f r f f f r f r r

r r r r r r

 
  

 

     

 



 
 

     

  

 
     
 
 

  

 

  

 

The expected return of the whole portfolio is then given by: 

       (fix) (arb) (fix) (arb)

n n n n nf f f f f        

Similarly, the variance of the portfolio is given by: 

   
2

2

2 (fix) (fix) 2 (fix) 2 2 (arb) (arb) 2 (arb) 2

22 2
, 1 1

2 2 2 2 2 2

, 1 , 1 , 1

1 1
,

where , ,

M M

n m mn n E n m mn n

m n n

M M M

nm nm m n nm m

n m n m n m

r
f f f f f f f r r

r r r r r r


    

 

     





 
 

     

  

 
     
 
 

  

 

  

 

The variance of the whole portfolio is thus: 

       2 2 (fix) (arb) 2 (fix) 2 (arb)

n n n n nf f f f f        

This follows because it can be verified that the covariance between the two portfolios is zero: 

2 2 2

(fix) 2 (arb) (arb) 2 (fix)

2 2 2
, 1 , 1

0
M M

E
m mn n m mn n

m n m n

r rf
f f f f

  
 

   

  

  
 

 
    
  

   

Thus it can be seen that the variance of the whole portfolio is always at least as great as the 

variance of the fixed portfolio alone, since both the terms are always positive. 

 Similarly, for the portfolio with a riskless asset, we start with the weights previously 

calculated: 

   2 2

0 0 0

1 , 1

1 1
and

M M

n nm m E nm m

m n m

f r r f f r r 
 

 

 

       

Then we find: 
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     

     

2

0 0 0

0 , 1

2 2 2

0 02
, 1 , 1

1

1

M M

n n n E n nm m

n n m

M M

n m mn n n nm m

m n n m

f r f f r r r r r

f f f r r r r

 


  




 



 

    

   

 

 
 

The variance of the portfolio is that of the risky assets alone, since the riskless asset has zero 

variance and zero covariance with the risky assets. It is interesting that in this portfolio (as in the 

portfolio with no riskless asset), the expected return of the risky assets is a constant times the 

variance of the risky assets. We note that the quantity, 

   2

0 0

, 1

M

n nm m

n m

S r r r r 



    

which is in general a function of time, is called Sharpe’s performance measure for the 

portfolio [G, p.132,148]. We also have the Sharpe performance coefficient, defined for a single 

security as  0m mr r  , where m  is the standard deviation of the returns [G, p.132]. 

The Capital Asset Pricing Model (CAPM) 

 Following Gouriéroux [G, p.183], and Sharpe (1964), Lintner (1965) and Mossin (1966), 

an equilibrium market condition can be added to the basic Mean-Variance portfolio optimization 

condition, to yield the Capital Asset Pricing Model (CAPM). This condition says that the 

market as a whole constitutes a Mean-Variance optimal portfolio. Thus we can define weights of 

securities of the total market by the same optimization condition as for an individual portfolio 

(with riskless asset): 

   ( ) 2 ( ) ( ) 2

0 0 0

1 , 1

1 1
and

M M
M M M

n nm m E nm m

m n m

f r r f f r r  

 

    
 
   

Here, (M) denotes the market quantities, and M denotes the number of securities in the whole 

market. The quantity Г represents a risk aversion parameter for the market as a whole. In the 

present case, we must normalize the market portfolio so that the sum of the fractions 
( )M

nf  is 

unity, with ( )M

Ef  unity, and define Г so that the fraction of the risk-free asset ( )

0

Mf  is zero. In 

other words, we specify the following: 

   ( ) 2 2

0 0

, 1

1,
M

M

E nm m

n m

f r r r r  



       

This then yields: 
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   

   

( ) 2 2 ( )

0 0

1 1

2 2

0 0

, 1

1

where

M M
M M

n nm m n

m n

M

nm m

n m

f r r r r f

r r r r

 

 

 

 

 



    

    

 


 

The expected return and covariance matrix on the entire market is thus [G, p.184]: 

       

       

( ) ( ) 2 2

0 0 0 0

1 , 1

2

2 ( ) ( ) 2 ( ) 2 2

0 0 0

, 1 , 1

M M
M M

n n n nm m

n n m

M M
M M M

m mn n n nm m

m n n m

f r f r r r r r r r

f f f r r r r r r

  

   

 

 

 

 

     

    

 

 

 

Now we see from the above that we have the following relation between the expected return and 

variance on the entire market: 

     ( ) 2 ( ) 2

0 0

M Mf r f r r       

We also need a covariance between an individual security and the market portfolio, which we 

denote by  ( )M

m f . Then this is given by: 

     ( ) 2 ( ) 2

0 0

1

M
M M

m mn n m

n

f f r r r r   



     

Thus, eliminating the constant quantity  2

0r r    (assumed positive) in the last two 

equations, we finally find: 

       
  
 

( )

0
( ) 2 ( )

0 0 2 ( )

M

M M

m m m M

f r
r r f r r f

f


  






     

This is usually written in the following form: 

 
 
 

     
( )

( ) ( ) ( )

0 0 02 ( )

M

m M M M

m mM

f
r r f r f r

f


  


      

The quantity ( )M

m  is called the beta of the security, with respect to the market portfolio (M). It 

expresses proportionality between the expected return of the security and that of the market 

portfolio in the CAPM. It is given by the covariance between the security and the market 

portfolio, divided by the variance of the market portfolio. 
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 In practice, the CAPM can be viewed as a regression of the returns of each individual 

security on the hypothetical market portfolio. Another way of looking at it is that the CAPM is 

a factor model with a single factor – the market portfolio. It will be observed that the above 

equation has just the same form as the standard regression equation, for example when future 

returns are regressed on past returns of the same security. In the present case the future returns 

are regressed on the past returns of the market portfolio instead. The market portfolio can be 

simulated by an average such as the S&P 500. The returns of this market portfolio can then be 

viewed as what we have called a technical indicator – a function of past data that is supposed to 

be correlated with future returns. Thus, we can use a Linear Prediction filter to estimate the 

time-dependent covariance  ( )M

m f  between the future returns and the S&P 500 as the 

technical indicator.  

3.4 Unconstrained Quadratic Optimization 

In the unconstrained quadratic optimization, we start again with a Q-function defined as 

before, but use a quadratic constraint instead of a linear constraint: 

2

1 , 1 1

( ) with 1
2

M M M

m m m mn n k k

m m n k

Q f f r f f M f f



  

      

The constraint may be implemented by means of a Lagrange multiplier: 

2

1 , 1 1

( ; ) 1
2 2

M M M

m m m mn n k k

m m n k

Q f f r f f M f f
 

 
  

 
    

 
    

The Q-function is then to be maximized with respect to the portfolio weights mf  and the 

Lagrange multiplier . This is a quadratic function, with the quadratic terms supplied both by the 

variance term and by the constraint. The linear term involving the returns contributes positively, 

and the quadratic variance term contributes negatively in proportion to the risk aversion 

coefficient γ. The presence of a quadratic term in this function is essential; otherwise the 

maximization problem has no solution. 

This is to be compared with the usual Markowitz mean-variance optimization using a 

linear constraint: 

2

1 , 1 1

( ) with
2

M M M

m m m mn n k E

m m n k

Q f f r f f f f



  

      
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In this case the Lagrange multiplier is implemented as follows: 

2

1 , 1 1

( ; )
2

M M M

m m m mn n k E

m m n k

Q f f r f f f f


  
  

 
    

 
    

One problem with this linear constraint is that the problem has no solution in the case of zero 

risk aversion. In this case we take the volatility term to be zero and take as the Q-function: 

 
1 1

M M

r m m k E

m k

Q f f r f f
 

 
   

 
   

This does not yield a solution due to the lack of a quadratic term, since the quadratic term in this 

case depends on the presence of the volatility term. Varying with respect to mf  yields: 

 
0

r

m

m

Q f
r

f



  


 

This is merely a constraint on the returns (which are supposed to be given) rather than an 

equation for mf . Thus this optimization procedure is ill-defined for the case of a trader who cares 

only about returns, not risk. 

 On the other hand, for the case of the quadratic constraint and zero risk aversion we use 

the following Q-function: 

 
1 1

; 1
2

M M

r m m k k

m k

Q f f r M f f



 

 
   

 
   

In this case, varying with respect to mf  yields: 

 ;
0

r

m m m m

m

Q f
r Mf Mf r

f


 


    


 

In this case, we get a solution for mf  in which the fraction mf  is proportional to the expected 

return, which seems very reasonable. But this only came about due to the existence of the 

quadratic term in the Lagrange multiplier, not the quadratic variance term. 

 Minimizing with respect to the Lagrange multiplier  gives us back the original 

constraint. We may now impose this constraint on the solution above: 

2 2 2 2

1 1 1

M M M

m m m m m m

m m m

r r M f f M M f f M  
  

 
   

 
    

Let us now define the squared norm of the returns analogous to that used in the constraint: 
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2

1

M

m m

m

r M r r


   

Thus we can solve for the Lagrange multiplier: 

2 2 2 0

ˆ ˆm
m m m m m

r M r M

r
r Mf f f r

r

 



   

    
 

Note that if all the returns are exactly zero, equivalent to the first term in the Q function absent, 

then there is no solution. This makes sense, because the return of the portfolio would be zero no 

matter what the portfolio weights. 

Standard Markowitz Q-Function 

If we go back to the original Markowitz Q-function, including a variance term to 

account for risk, and using the Lagrange multiplier  to impose the constraint, we have: 

  2

1 , 1 1

; 1
2 2

M M M

r m m m mn n k k

m m n k

Q f f r f f M f f

 
 

  

 
    

 
    

Minimizing with respect to all the variables mf , we now find: 

  2

1

;
0

M
r

m mn n m

nm

Q f
r f Mf

f

 
  




   


  

This now leads to the equation: 

2

1

M

m m mn n

n

Mf r f  


    

Imposing the constraint, we now find: 

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1

M M M M

m mn n m mn n m m

m n n m

M M M

m mn n m mn n

m n n

r f r f M f f

M M r f r f

    

    

   

  

  
    

  

  
     

  

   

  

 

However, in the present case we are unable to find a simple algebraic solution for the Lagrange 

multiplier, except in the case 0  , which leads to the same solution as before. For 0   there 

is no apparent way to eliminate the variables mf  on the right-side of the equation. 

We can make progress by writing the equation above in matrix form (before imposing the 

constraint) and then inverting it to obtain mf : 
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   2 1

1 1 1

, ,
M M M

m mn mn n mn n n nm m

n n m

r M f K f f K r      

  

          

If we now combine this with the constraint, we have an implicit equation for the Lagrange 

multiplier  as a function of the parameter γ: 

 2

1 , 1

1 ,
M M

m m p pq q

m p q

M f f M r K r 

 

    

We note that γ is defined to be an arbitrary non-negative constant, given as the risk aversion, 

while the Lagrange multiplier  is determined (in principle) by γ using the constraint, as in the 

above implicit equation. The above equation is a constraint on the squared norm of the vector 

 1

1

,
M

nm m

m

K r 



 . We have already found the solution for  when γ is zero. However, it is not 

clear how to obtain an explicit solution for  when γ is non-zero. Given a fixed value of γ, we 

can, of course, find a solution for  by an approximation procedure. The squared norm of the 

vector is computed, then the value of  adjusted by successive approximations until the norm 

equals unity. So the problem should have a solution, at least within some range of the risk 

aversion parameter γ. 

Limits on Constant Parameters 

We insist that both the constants , γ, are non-negative, and at least one positive, in order 

that the matrix  ,mnK    in brackets be positive definite and invertible. This should be the case 

provided γ is small enough, so that  does not become negative, given the above equation for  

and γ: 

2

1

M

m m mn n

n

Mf r f  


    

We notice, in fact, that for a certain maximum value of γ, the value of  should become zero: 

2

(max)

1

0 0
M

m mn n

n

r f  


     

We take this maximum value of γ as the maximum risk aversion. Then, taking the value 0  , 

we may solve for the weights mf  for this case: 
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 2 2

(max)

1 1(max)

1
0

M M

m mn n n nm m

n m

r f f r   




 

      

Thus we have: 

4 2 4

(max)2
1 , 1 , 1(max)

1
M M M

n n n nm m n nm m

n n m n m

M
M f f r r M r r  



 

  

       

Therefore we have: 

 4

(max)

, 1

0
M

n nm m

n m

M r r  



   

Thus will be the maximum value of γ, and the minimum value will be zero.  

On the other hand, the maximum value of  will be that given in the previous section, 

which occurs when the value of γ is zero: 

22 2

(max) (max)

1

M

m m m m

m

r Mf M r M r r 


      

In that case, we solved for  and found the value: 

 (max)

1

1
0

M

m m

m

M r r
M

 


   

Thus we see that as the risk aversion constant γ varies from zero to its maximum, the Lagrange 

multiplier  varies from its maximum to zero. The zero lower limit of the risk aversion is 

mandated so that the investor will always be risk-averse instead of risk-seeking, whereas the 

upper limit of the risk aversion is somewhat arbitrary and is set to make sure the problem 

remains well-defined mathematically. (Theoretically the investor could have infinite risk 

aversion, meaning zero risk tolerance. In the present approach this would potentially result in 

the problem becoming ill-posed.) 

Approximate Solution to the Optimization Problem 

Now let is divide both sides of the above equation by (max)M r  : 

2 2

1 1 (max)

ˆ
M M

m
m mn mn n m mn mn n

n n

r
r M f r f

r r

 
    

 

 
        

  
   

Using the above we recall: 
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4 2

(max) (max)

1 , 1

1 M M

m m n nm m

m n m

r
M r r M r r r

M M
    

 

      

Thus we may write: 

 

2
2 2

2
1 (max) (max)

ˆ ˆ ˆ
M

m mn
m mn mn n mn

n

r
r f

r r r

 
  

   


 
    

  
  

Now let us define the following constants: 

   
(max) (max)

0 1 , 0 1
 

   
 

       

However, we also know that 0 1     and 1 0    . Thus we can approximately 

define     1     . (Note that the risk aversion γ is actually the independent variable.) 

This equation is not exact, but it is exact at the two end points. At all other points it can be 

regarded as an approximate solution for the Lagrange multiplier    . Then we invert the 

definition and express  1   . It is seen that the parameter α can be interpreted as the 

(normalized) risk tolerance parameter. 

Now we can redefine the parameters in the matrix as follows: 

   2

1 1

ˆˆ ˆ1
M M

m
m mn mn n mn n

n n

r
r f K f

r
   

 

         

Now it is clear that we have the limiting values 0 1   for the range of the parameter α: 

2

1

ˆ ˆˆ ˆ ˆ1: 0 :
M

m m m m m mn n

n

f f r f f r   



       

The value 0   corresponds to minimum risk tolerance, and yields a minimum risk portfolio, 

taking into account the covariance matrix in the denominator. The value 1   corresponds to 

maximum risk tolerance, and yields a maximum risk portfolio in which each position is 

proportional to the expected return, and the covariance matrix is not taken into account. 

In the above, we have been using the notation ˆ
mf   to mean the weights mf  that obey the 

quadratic constraint. The solutions given above obey this constraint exactly at the two endpoints 

of the risk tolerance parameter, and approximately elsewhere. However, we may instead want to 

normalize the weights so that the sum of their absolute values adds up to the margin leverage 
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Mf , as defined previously. We then reformulate the general solution and redefine the weights ˆ
mf  

to mean those renormalized to a given fixed margin leverage. The general solution is given by: 

 1

1 1

ˆˆ ˆ ( )
M M

n nm m n n M m

m m

f K r f f f f f

 

    

Thus the problem is solved by (approximately) defining a range of the parameters corresponding 

to risk tolerance, inverting a positive definite matrix, and then imposing a different constraint 

afterward by renormalizing.  

This solution yields portfolios of minimum and maximum risk, which are in intuitive 

accord with what we would expect. Note that the minimum-risk portfolio here coincides with the 

maximum-risk portfolio of the standard Markowitz mean-variance treatment, and the minimum-

risk portfolio in that case did not even take into account the expected returns. In the present 

solution, the portfolio weights are always proportional to the expected returns, with varying 

weight given to the covariance matrix in the denominator according to the risk tolerance. So this 

seems to yield a much more reasonable result than the standard Markowitz method. 

3.5 Conclusion 

The portfolio optimization calculation is important in order to maximize returns and 

minimize risk for the portfolio as a whole. It should be emphasized that only with a well-

balanced portfolio is it reasonable to expect to achieve an acceptably low level of risk. If stocks 

or other securities are traded individually, most likely the outcome will be a drastic increase in 

risk and very little increase in return. It is necessary to have the optimized portfolio so that the 

random fluctuations in the different securities will balance each other and average out to yield a 

reasonable degree of risk reduction. Then, the idea is that instead of trading in each security 

separately, trading is done within the portfolio as a whole by the act of portfolio rebalancing, 

maintaining an optimal portfolio at all times. 

 The idea of trading by portfolio rebalancing automatically implements the buy-low, sell-

high trading strategy. As the price of a security increases, with a fixed number of shares, so does 

the weight of that security in the portfolio. This results in an unbalanced portfolio. To keep the 

portfolio balanced, some of the shares should be sold. However, if the expected return is 

accurate, the portfolio optimization will recommend an increased position as long as the 

expected return is positive. Then, when the position reaches a peak and the expected return starts 
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to decline, the position will be greater than the optimal weight in the portfolio, and a sell signal 

will be given. The selling will be spread out over time, but in general will occur when the price is 

high and decreasing. Then, with decreasing price, the weight of the security in the portfolio 

decreases. Again the portfolio is unbalanced. At some point, the expected return will again 

become positive, and assuming it is accurate, the portfolio optimization will again recommend an 

increased position. When the position reaches a trough and expected return starts to increase, the 

position will be less than the optimal weight in the portfolio, and a buy signal will be given. 

Again, the buying will be spread out over time, but in general will occur when the price is low 

and increasing. Thus, in this approach, the buy and sell signals are generally given near the 

troughs and peaks of the prices, but they are spread out over time, which reduces risk of a loss 

and spreads out the returns more evenly. So maintaining an optimal portfolio is a good way to 

implement a trading strategy that maximizes returns while minimizing risk. 
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